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ABSTRACT OF THE THESIS 

INFLUENCE OF VERMICOMPOST TEA ON SECONDARY METABOLITES IN 

SOLANUM LYCOPERSICUM WITHIN SOUTH FLORIDA 

by 

Daphne Kyoko Sugino Souffront  

Florida International University, 2019 

Miami, Florida 

Professor Krishnaswamy Jayachandran, Major Professor 

Fresh Market Tomatoes provide a high revenue stream for Florida’s agricultural 

sector. To attain profitable yields, farmers introduce high inputs of pesticides to suppress 

pest invasion/damage. Heavy usage of pesticides has adverse effects on human and 

environmental health. A possible solution might be the incorporation of vermicompost in 

pest management. Typically used as a fertilizer, vermicompost has pest suppressant 

properties. Mechanisms influencing enhanced pest resistance are unknown. To identify 

such mechanisms, a study was conducted to evaluate physical and chemical changes of 

the BHN589 tomato plant following the addition of varying vermicompost tea treatments 

(T5%, T10%, and T20%) . Results indicated that vermicompost tea positively affected 

various physical parameters such as biomass, chlorophyll content, yield, and soil pH. 

Moreover, the addition of vermicompost tea also influenced secondary metabolite 

production. Changes were mainly concentrated in compounds emerging from the 

mevalonic acid pathway, which regulates terpenoid production. Other metabolite groups 

were also affected.    
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1.  INTRODUCTION 

The agricultural sector generates a high revenue stream for the state of Florida. 

The state’s subtropical climate allows for year-round agricultural production. An 

economically important crop for Florida is the fresh market tomato. In 2017, Florida was 

ranked first nationally in the production value of fresh market tomatoes (Florida 

Department of Agriculture, 2017). According to the Florida Department of Agriculture, 

tomatoes generate approximately $262 million annually for the state (Florida Department 

of Agriculture, 2017). Although profitable, tomato cultivars require high inputs of labor, 

nutrients, and fertilizer to support the plant’s life cycle (Letourneau & Goldstein, 2001).  

 To ensure crop success, farmers apply a wide array of chemical pesticides into 

their fields. Pesticides such as bifenthrin, chloropicrin, and paraquat are commonly used 

to control noxious weeds, harmful fungal associations, and herbivorous insect invasions 

that might decrease yield and quality of the fruit (NASS, 2007). A survey conducted by 

the USDA’s National Agricultural Statistics Service (NASS) found that nearly all (94%) 

Floridian tomato fields contain some sort of pesticide (NASS, 2007).  

Pesticide usage is associated with strong negative effects on human and 

environmental health. Indirect costs to pesticide application include soil and water 

pollution, the disruption of ecosystem services as a result of loss of pollinators and 

natural predators, and pest resistance. Due to harmful externalities and decreased 

effectiveness, farmers have reduced chemical pesticide usage through the implementation 

of integrated pest management practices (Leppla, 2007). Integrated pest management 

(IPM) is a combination of proactive measures that prevent pest infestations from reaching 
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damage thresholds (Leppla, 2007). Despite success, tomato farming still regularly relies 

on chemical pesticide usage.  

To ameliorate issues surrounding agrochemical usage, scientists as well as 

farmers are seeking sustainable alternatives. A possible solution might be the 

incorporation of vermicompost and vermicompost tea/extractions within pest 

management practices. Vermicompost is a peat-like manure produced from the 

interactions between mesophilic bacteria and epigeic earthworms (Edwards et al., 2010; 

Joshi et al., 2015). Although vermicompost and vermicompost tea/extractions are 

typically applied as organic fertilizers, they exhibit pest repelling properties (Arancon et 

al., 2007; Chatterjee et al., 2013). Components such as organic acids, vitamins, free 

enzymes, soluble phenolic compounds and microorganisms in the vermicompost can alter 

the plant’s physiology and chemical composition rendering it unpalatable or unattractive 

to herbivorous insects.  

Several studies detail vermicompost’s ability to control or limit pest invasion. A 

study by Arancon et al. (2005), tested the effects of commercially sold vermicompost on 

infestation and damage caused by the two-spotted spider mite (Tetranychus urticae), 

mealy bugs (Pseudococcus sp.), and aphids (Myzus persicae). Results indicate an overall 

reduction of leaf damage and population levels across all vermicompost treatments 

(Arancon et al., 2005). 

Vermicompost by-products such as vermicompost extraction or tea are also being 

studied as a pest management practice. Vermicompost extract or tea is a liquid fertilizer 

made from vermicompost. Extractions/ teas can be produced through vigorous aeration or 

passive steeping for approximately 24 hours. The mixture contains all of vermicompost’s 
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beneficial attributes and compounds and it is shown to deter pests in a similar fashion. 

Farmers and scientists have opted for its usage to ease application and target specific 

plant parts. 

Edwards et al. (2010), different concentrations of vermicompost tea were added to 

cucumber and tomato plants to suppress invasion and attack from cucumber beetle 

(Acalymna vittanum) and tobacco hornworm (Manduca sexta). Edwards et al. (2010) 

concluded that all added concentrations of vermicompost tea significantly suppressed the 

establishment and damage inflicted by both pests (Edwards et al., 2010). Researchers also 

noted that the higher the vermicompost tea preparation used, the greater the pest 

suppression, which is likely caused by the accumulation or increase of secondary 

metabolites in plant tissues (Edwards et al., 2010).   

As studies have shown, vermicompost and vermicompost extract/tea can decrease 

pest invasion and limit damage (Edwards et al., 2010; Arancon et al., 2005). Scientists 

speculate that increased resistance to pest invasion might be attributed to chemical 

changes occurring in the plant. These changes are likely due to the accumulation or 

elicitation of secondary metabolites such as phenolic acids, tannins, and flavonoids which 

are linked to chemical defense mechanisms in plants. Despite recent studies, mechanisms 

in which vermicompost and vermicompost extract/tea enhance suppression are poorly 

understood.  

Therefore, the present research project was developed to understand the 

mechanisms behind the effect of vermicompost in economically important crops. 

Specifically, I will assess chemical defense compound changes in a popular and widely 

consumed crop such as tomatoes through the addition of compost tea.  I will also evaluate 
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alterations to the physical structure and resilience of the crop. Tomatoes, like most plants, 

are known to have hefty chemical defenses to deter insect infestation or pathogen caused 

diseases. Chemical defenses can be consecutive or induced, and can arise from phenolic 

acids, terpenoids, and other organic acids (Edwards et al., 2010). Understanding induced 

change in phytochemical defenses from important food crops like tomatoes could lead to 

a reduction in pesticide application, while promoting agroecosystem health. 

1.2 Objectives 

 The main goal of the present project is to assess the effects of vermicompost tea 

in tomato plants, taking special attention on changes in the phytochemical defense profile 

and other related physiological characteristics. Specific objectives include: 

1. To assess the effects of vermicompost tea on secondary metabolites of BHN589 

tomato plants and evaluate if change influences phytochemical defenses through 

plant secondary metabolite profiling.   

2. To evaluate the effects of vermicompost tea on the tomato plant’s physical 

structure.  

3. To determine if enhanced pest resistance through the addition of vermicompost 

tea in the plant tomato is caused by chemical or physical changes within the plant, 

or a combination of both. 

1.3 Hypothesis 

1. The overall application of vermicompost tea on tomato seedlings across a 104-day 

planting period will have a significant effect on secondary metabolite production 

and phytochemicals linked to plant defense.  
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2. The overall application of vermicompost tea on tomato seedlings across a 104-day 

growth period will result in the significant difference of above and below ground 

biomass and yield/marketable yield as compared to the control treatment.  

 

2. LITERATURE REVIEW 

2.1 Tomato Production in Florida 

Tomato (Solanum lycopersicum) is a vegetable-bearing crop belonging to the 

Solanaceae or tobacco family (Bai & Lindhout, 2007). Originating from the Andean 

region in South America, the tomato has become one of the world’s most popular and 

consumed vegetable crop (Bai & Lindhout, 2007; Guan et al., 2017). In 2014, worldwide 

production of fresh and processed tomatoes surpassed 170 million tons (FAO, 2017). The 

United States ranks second worldwide in fresh market tomato production, generating 

around 1.35 million tons of tomatoes annually (Guan et al., 2017). Florida leads national 

production, with a total production value of $262 million (Florida Department of 

Agriculture, 2018).  

Despite high market value, tomato cultivation requires substantial amount of labor, 

nutrients, and pesticides inputs. Field-grown tomatoes are cultivated from October to 

June and require a soil pH of 6.0- 7.0 (Guan et al., 2017). During the crop’s life cycle, 

tomatoes are carefully monitored and harvested multiple times during the growing 

season. Tomato production is considered labor intensive, because of frequent hand-

harvesting, nutrient/pest monitoring, and pruning (Guan et al., 2017).   

Accounting for a major part of production expenses, fertilizer use is also an important 

part of tomato cultivation (Hochmuth & Hanlon, 2000). The right balance of nutrients is 
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crucial for crop success and high-quality fruit. The recommended target nutrient rates are 

200-150-225 lb/acre N, P2O5, K2O depending on the type of soil being farmed 

(Hochmuth & Hanlon, 2000). Given the high variation in soil types and pH, farmers must 

adjust their fertilizing practices to avoid volatilization or leeching (Wang et al., 2015).  

Finally, tomato crops are highly susceptible to pest damage and invasion (Schuster & 

Smith, 2003; Webb et al., 2001). For this reason, pesticide inputs during production and 

harvest are necessary to maintain profitable yields. A report released by USDA’s 

National Agricultural Statistics Service (NASS) revealed that nearly all (94%) Floridian 

tomato farmers apply pesticides into their farm fields. Common pesticides include 

paraquat, chlorothalonil, and bifenthrin (NASS, USDA, 2007). Pesticide application 

deters invasion and limits damage inflicted by weeds, herbivorous insects, and fungi. 

Although pesticide use has been effective in the past, pesticide resistance and the 

emergence of new/ exotic pests has rendered agrochemical-only management tactics 

obsolete. To mitigate damage or invasion, farmers have opted for integrated pest 

management practices.  

2.1.1 Integrated Pest Management of Tomato Crops 

Depending on the variety, tomato crops can be highly susceptible to pest infestation 

and damage (Picanco & Marqini, 1999; Pianco et al., 2007). In the past, agricultural 

success was heavily dependent on agrochemical application. Frequent and excessive 

pesticide applications have decreased chemical effectiveness, and decimated natural 

enemy populations. Presently, pest populations and crop damage cannot be controlled 

solely by chemical pesticides. For this reason, Florida Department of Agriculture and the 
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University of Florida IFAS Extension have encouraged tomato farmers to utilize 

integrated pest management practices (IPM) (Leppla, 2007). 

IMP is a combination of low risk and cost-effective pest control methods that 

combine available pest and environmental information to prevent pest from reaching 

damage thresholds (Leppla, 2007). Common practices among tomato farmers include 

early pest detection through scouting, crop rotation or cover cropping, usage of resistant 

varieties, plasticulture, organic amendments, and other biological controls (Leppla, 

2007).    

Numerous studies conducted detail the relationship between the adoption of IPM 

practices and its effectiveness at controlling economic threshold levels. A study 

conducted by Picanço et al. (2007) studied the effect of IPM practices on tomato 

production and conservation of natural enemies. Picanço et al. (2007) observed that 

integrated pest management practices efficiently controlled different species of aphids, 

moths and harmful weeds. Moreover, the integration of IPM drastically reduced the 

number of insecticide applications and increased the population of natural enemies 

(Picanço et al., 2007). Similarly, a study lead by Demirozer et al. (2012) assessed the 

effect of integrated pest management programs for thrips on fruiting vegetables like 

tomato in Florida. The study concluded that effective and sustainable control of thrips 

and topoviruses is accomplished through IPM with a special focus on resistance 

management (Demirozer et al., 2012). Demirozer et al. (2012) also noted that farmers 

from Palm Beach County, who shifted from calendar chemical applications to scouting, 

saw a significant reduction in yield. Total savings amassed to $28.8 million from reduced 

damage and decreased pesticide applications (Demirozer et al., 2012).  
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Non-chemical use IPM practices reduce pest population through the conservation of 

natural enemies and overall improvements in agroecological biodiversity. The 

conservation of natural enemies supplements agrochemical usage. Many studies such as 

Letourneau & Goldstein (2001) suggest that non-agrochemical pest management 

increases natural predator population while maintaining the comparable economic 

damage thresholds of conventional farms. Limited agrochemical usage and informed 

fertilizer applications enhance overall biodiversity. Many studies detail the benefits or 

positive correlations between biodiverse agroecosystems and pest management. For 

example, greater microbial activity in organic soils contributes to root pathogen 

suppression through microbial antagonism or competition (Drinkwater et al., 1995). 

Diverse microbial communities may be able to compensate for synthetic chemical inputs 

(Drinkwater et al., 1995).  

2.1.2 Common Pests of Tomato Crops in Florida  

 An agricultural pest can be defined as an arthropod or insect that causes economic 

loss through a decrease of marketable yield (Lange & Bronson, 1981). Tomato crops 

cultivated in Florida are prone to insect infestation and damage (Schuster & Smith, 

2003). Infestation and damage inflicted by pests is directly correlated with the life cycle 

of the plant, environmental conditions, and the control methods employed by growers. 

Common tomato pests in Florida include whiteflies, aphids, thrips, multiple species of 

larvae, and leafminers (Webb et al., 2001). These pests are attracted to the tomato plant’s 

fruit and sap (Webb et al., 2001). Additionally, leaves and other parts of the plant are 

used by pest to lay their eggs and provide a stable food source for larvae (Webb et al., 

2001; Schuster & Smith, 2003).   
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 The silverleaf whitefly or Bemesia tabaci biotype B is a key pest for tomato plants 

in Florida (Schuster, 2001). B. tabaci is a polyphagous phloem feeder, which means they 

feed on the sap of a wide array of plants (Schuster et al., 2009; Webb et al., 2001). 

Through its indiscriminate feeding habits, B. tabaci can serve as a vector for diseases, 

viruses, deformities, and mold development (Webb et al., 2001; Schuster et al., 2009). 

Severe ailments such as the tomato yellow leaf curl virus and tomato mottle virus are 

commonly transmitted by this pest (Webb et al., 2001; Schuster et al., 2009). Whitefly 

infestations are also associated with irregular ripening disorder which causes early 

ripening of the fruit and the build-up of internal white tissue affecting optimal yield 

(Schuster, 2001; McCollum et al., 2004). 

 Other pests such as aphids and thrips also act as vector for viruses, diseases, and 

mold. The green peach aphid or Myzus persicae is the most common aphid species in 

Florida tomatoes (Webb et al., 2001; Lange & Bronson, 1981). Myzus persicae feeds on 

the blossoms of the plant. Consumption of blossoms reduces fruit set, while facilitating 

mold colonization and virus transmission to neighboring plants (Webb et al., 2001; Lange 

& Bronson, 1981). Viruses commonly spread by aphids are the tobacco etch virus, pepper 

mottle virus, and destructive streak disease and cucumber mosaic virus (Webb et al., 

2001; Lange & Bronson, 1981; Lapido & Roberts, 1977). 

 Invasive thrips such as the Western flower thrip (Frankliniella occidentalis) are 

considered one of the most damaging pests to tomato crops in southern and central 

Florida (Funderburk et al., 2011; Webb et al., 2001). Franklinella occidentalis is the most 

efficient vector of the topovirus tomato spotted wilt virus (Funderburk et al., 2011; 

Demirozer et al., 2012). The virus is spread through the consumption of epidermal cells 
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in the plant (Funderburk et al., 2011; Webb et al., 2001; Demirozer et al., 2012). 

Moreover, preferred oviposition of F. occidentalis eggs are inside of the tomato fruit. 

Burrowing of eggs onto the fruit set causes dimples and discoloration in the tomato 

(Funderburk et al., 2011; Webb et al., 2001).  

 Similarly, the Tomato pinworm larvae (Keiferia lycopersicella) and the Tomato 

fruitworm larvae (Heliocoverpa zea) cause severe damage to the foliage and fruit of the 

tomato plant (Webb et al., 2001). Both species of larvae are avid feeders, and their 

consumption patterns can lead to complete defoliation of the plant and damaged fruit 

through rot, contamination or the introduction of secondary pathogens (Webb et al., 

2001). Finally, leafminers such as the Vegetable leafminer (Liriomyza sativae, L. trifolli) 

also cause foliage damage. Leafminers decrease photosynthetic area by burrowing in the 

foliage (Webb et al., 2001). Burrows can serve as entry points for other pathogens 

leading to necrotic tissue and sunscald (Webb et al., 2001).  

2.2 Secondary Metabolites in Plants  

 Plant secondary metabolites are defined as low molecular weight compounds that 

have no recognized role in fundamental life sustaining processes (Oksman-Caldentey & 

Inzé, 2004). Secondary metabolite production or accumulation does not contribute to 

growth, development, or reproduction of the plant.  Secondary metabolites large and 

diverse class of compounds are characterized through their biosynthetic origins and can 

be divided into four major groups: alkaloids, isoprenoids, glucosinolates, and 

phenylpropanoids (Table 1 and Table 2) (Oksman-Caldentey & Inzé, 2004). Although 

major groups and compounds may differ in function, it is generally understood that the 
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production of secondary metabolites aids the plant in survival and adaptation to their 

ecosystem (Delgoda & Muray, 2016; Oksman-Caldentey & Inzé, 2004).   

2.2.2 Roles of Secondary Metabolites 

 Secondary metabolites are often produced through the synthesis of primary 

metabolites (Ramakrishna & Ravishankar, 2011). The production of these compounds is 

a response to abiotic or biotic stress, and therefore play a major role in adaptation of 

plants to their environment (Borgaud et al., 2001). Many compounds contain antiviral, 

antifungal, antibiotic, anti-feeding, and toxic properties that protect plants against 

pathogens, pests, and competition (Borgaud et al., 2001). Moreover, they constitute 

important UV absorbing compounds, preventing leaf damage.  

Abiotic stress, such as drought or temperature, significantly affect plant growth 

and development. Blanch et al. (2008) studied the effects of drought and temperature 

stress on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. 

During their study, Blanch et al. (2008) monitored concentrations of α-pinene and Δ3-

carene, two common terpenes. Results demonstrated that total terpene concentrations in 

both plant species increased significantly under drought treatment (Blanch et al., 2008). 

Drought conditions induce oxidative stress in plants. Accumulation of monoterpenes in 

water-stressed plants may help with oxidative stress, protecting the plant from predation 

or aid with storage (Blanch et al., 2008; Peñuelas & Estiarte, 1998). Jaleel et al. (2008) 

conducted a similar study involving the effects of soil salinity and secondary metabolite 

accumulation in Catharanthus roseus. Jaleel et al. (2008) also observed greater total 

indole alkaloid content in plants treated with salt compared to control treatments.  
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 Biotic stresses such as herbivory attack or pathogen infection can also trigger for 

secondary metabolite production. For instance, Tian et al. (2012) observed a significant 

increase in jasmonic acid after caterpillar saliva was added to a wound in a tomato plant. 

Jasmonic acid plays a major role in plant defense against pests and pathogens (Srivastava, 

2002). The compound is responsible for inducing the synthesis of proteinase inhibitors, 

volatile aldehydes, and chitinases (Srivastava, 2002). Levels in treated plants remained 13 

to 40 times higher as compared to control plants suggesting secondary metabolite 

accumulation (Tian et al., 2012). Induced chemical defenses have also been observed in 

rice. Rice produces fifteen phytoalexins or defense compounds such as orzyalexins A to 

F, sakuranetin, or phytocassanes A to E (Hasegawa et al., 2010; Contreras-Cornejo et al., 

2014). These compounds are known to accumulate and exhibit antibiotic properties in 

response to rice-blast pathogens Magnaporthe grisea and Rhizoctonia solani (Kuc, 1995; 

Koga et al., 1995; Dillon et al., 1997; Contreras-Cornejo et al., 2014).  
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Table 1 Secondary Metabolite Groups and Description 

 
Secondary Metabolite 

Type 

General Description  Function Examples References 

 

Nitrogen Containing: 

Alkaloids 

A diverse group of heterocyclic nitrogen compounds that are 
typically alkaline. The main role of these compounds is defense. 
Some defense mechanisms triggered by alkaloids includes bitter 
or unpalatable taste of biomass; and disruption of protein function 
and central nervous system alteration in pests.  
 

Defense Cocaine 
Morphine 

(Matsuura & 
Fett-Neto, 
2015) 

 

Nitrogen and Sulfur 

Containing: 

Glucosinolates  

Sulfur containing compounds are typically found in the 
Brassicaceae family. When these compounds undergo hydrolysis, 
they form diverse products processing different biological 
activities. Some by-products have antinutritional or toxic effects, 
aiding in herbivore and pathogenic defense.  
 

Defense 
Flavoring 
 

Singrin 
Glucobrassicin 

(Holst & 
Fenwick, 
2003) 
(Ishida et al., 
2014) 
 

 

Isoprenoids or 

Terpenoids 

Terpenes are formed by the condensation of two or more isoprene 
units. They form the largest family of compounds found in 
nature. Although their major role is in defense against herbivory, 
not all terpenoids act as secondary metabolites. Some may have 
crucial roles in photosynthesis or are a source of plant hormones. 
They are classified by the number of isoprene units that comprise 
the parent terpene. Classes of terpenoids includes: 
hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, 
triterpenoids, etc.   
 

Defense 
Photosynthetic 
Pigment 
Growth 
Regulator 

Phytol 
Linallol 
 

(Srivastrava, 
2002) 
(Tholl, 2015) 

      
     Sterols 

Phytosterols are steroid alcohol compounds that are 
biosynthetically derived from squalene and other triterpenes. 
They play a crucial role in cellular and developmental processes, 
as well as regulate membrane fluidity.  

Regulate 
membrane 
fluidity 

Sitosterol 
Campesterol 
 

(Piironen et 
al., 2000) 
(Tholl, 2015) 

    
     Carotenoids 

Isoprenoid pigments that provide color and aroma to fruit, 
vegetables, flowers, and leaves. Coloration associated with 
carotenes are usually yellow, orange or red. Carotenoids also play 
role in light absorption, serving as photoprotective compounds.  

Photosynthetic 
Pigment 
Pigmentation 
Aroma 
 

Lycopene 
Alpha 
carotene 

(Cazzonelli, 
2011) 
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Table 2 Secondary Metabolite Groups and Descriptions Continued 

Secondary Metabolite 

Type 

General Description  Function Examples References 

 

Phenylpropanoids 

A diverse group of secondary metabolites with an aromatic ring 
with a three-carbon substituent synthesized from phenylalanine 
or tyrosine. This group includes phenolic acids, flavonoids, 
monolignols, stilbenes, and coumarins. 

Defense  
UV/ High 
light 
protection 
Cell wall 
component 
 

Caffeic acid 
Eugenol 

(Drifhout & 
Morgan, 
2010) 
(Deng & Lu, 
2017) 

      
       Phenolic Acids 

A large group of aromatic acid compounds that are characterized 
by the presence of a benzene ring linked to one or more 
hydroxyl or methoxy group. Phenolic acids can be divided into 
polyphenols and simple phenols. Most phenolic acids are linked 
to structural components (lignin or cellulose), larger 
polyphenols, or smaller organic molecules. These compounds 
possess diverse functions influencing nutrient uptake, protein 
synthesis, enzyme activity, photosynthesis, allelopathy/ general 
defense, and structural components. 

Defense 
Protein 
synthesis 
Cross-linking 
to act as cell 
wall 
component 
Pollinator 
Attractor 

Vanillic acid 
Salicylic acid 

(Deng & Lu, 
2017) 
(Robbins, 
2003) 
(Goleniowski 
et al., 2013) 
 

 
      Flavonoids 

This subclass of polyphenols characterized for containing two or 
more aromatic rings. They are further categorized into flavones, 
flavanols, isoflavones, chalcones, flavanols, and anthocyanins. 
These compounds could exhibit color and can supply 
pigmentation to different plant parts and protect against 
excessive solar radiation. 

Pigmentation 
Aroma 
Control of 
cellular 
enzyme 
activity 
Regulation of 
growth 
hormone 
transport 
 

Rutin 
Quercentin 
 

(Panche et 
al., 2016) 
(Pietta, 2000) 
(Treutter, 
2006) 
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2.2.3 Tomato Secondary Metabolites  

 The tomato, Solanum lycopersicum, is known for secondary metabolite rich 

tissues and fruit. In the past, secondary metabolite profiling has been limited to tomato 

fruit. Fruit or edible parts of the fruit are usually tested to determine nutritional value of 

crop in question. Because of the focus of this study, the review will be limited to 

secondary metabolites found in tomato leaves.  

 Secondary metabolite profile from tomato leaves differs from those in the fruit. 

Secondary metabolites found in tomato fruits function as an attractant to encourage seed 

dispersal (Kim et al., 2014). Compounds such as α-tomatine (alkaloid) or lycopene 

(carotenoid) are responsible for preventing fruit rot while maintaining optimal color, 

aroma, and flavor to signal the presence of vitamins, sugars and amino acids to seed-

dispersing herbivores (Kim et al., 2014). In contrast, metabolites produced in the leaves 

and internodes of tomato plants are noxious to insects and pathogens (Kim et al., 2014).  

 Tomato leaves are rich in alkaloids, terpenoids, and phenolic compounds. Kim et 

al. (2014) reported a high proportion dehydro-tomatine and α-tomatine, two alkaloids, in 

tomato leaf biomass. High concentrations of alkaloids were detected in young or 

sprouting leaves (Kim et al., 2014). Dehydro-tomatine and α-tomatine in plants serve as 

chemical defenses. For instance, α-tomatine disrupts cell membranes through lysing of 

the liposome (Morrissey and Osbourn, 1999). Moreover, Boulogne et al. (2012) found 

evidence of tomatine compounds acting as a fungicide and insect deterrent for 

Leptinotarsa decemlineata, Melanopus bivittatus, Fusarium solani, and Fusarium 

oxysporum.  
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 Terpenoids are also a major component of tomato leaves (Buttery et al., 1987; 

Kim et al., 2014). Terpenoids are diverse, fulfilling roles in photosynthesis, cell 

membrane regulation or pigmentation. Buttery et al. (1987), Colby et al. (1993), and Kim 

et al. (2014) reported the presence of various monoterpenes and sesquiterpenes. Mono 

and sesquiterpenes such as β-Phellandrene and myrcene are considered volatile 

compounds. These volatile compounds are contained in leaf glandular trichrome and are 

released after leaves are damaged (Degenhardt et al., 2003). Once released, the aroma 

serves to attract natural enemies to herbivores attacking the plant (Degenhardt et al., 

2003).  

 Carotenoids and phytosterols are other types of terpenoids also present in tomato 

leaf tissues. Carotenoids are isoprenoid pigments that supply color and aroma to various 

plant parts (Cazzonelli, 2011). They function as photoprotective compounds, preventing 

bleaching or damage from the sun in leaf tissues (Cazzonelli, 2011). Carotenoids such as 

β-carotene and lutein have been found in tomato leaves (Fraser et al. ,1994; Kim et al., 

2014). Both compounds are extensively found in leafy greens and have strong antioxidant 

properties (Jiménez-Escrig & Sanchez-Muniz, 2000; Kim et al., 2014).  

Phytosterols are steroid alcohols derived from squalene and other terpenes 

(Piironen et al., 2000). They play an important role in different cell processes, as well as 

regulate membrane fluidity (Piironen et al., 2000). Stigmasterol and β-sitosterol are 

predominant phytosterols in plant tissues (Hodzic et al., 2008; Wang et al., 2012). In 

tomato, these compounds may also function as defense from pathogens (Wang et al., 

2012). Griebel & Zeier (2010) showed that stigmasterol synthesis was induced in plants 

upon virulent infection. To inhibit pathogen infection, plants reduce excess nutrient 
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efflux from their apoplasts (Wang et al., 2012). Manipulating sterol synthesis prevents 

nutrient efflux from apoplast through membrane permeability control (Wang et al., 2012). 

   Phenolic compounds are low molecular weight molecules widely distributed in 

plants. They fulfill several roles including defense, pigmentation, and protein synthesis 

(Drijfhout & Morgan, 2010; Deng & Lu, 2017). Depending on their chemical structure, 

phenolic compounds can be categorized into different groups, such as phenolic acids, 

flavonoids, lignans, and stilbenes (Gan et al., 2019). Chlorogenic, caffeic, and vanillic 

acids have all been detected in tomato leaves (Kim et al., 2014). Chlorogenic acid and its 

derivatives are the main phenolics in tomato leaves (Slimestada and Verheulb, 2009). 

Chlorogenic and caffeic acids are also oxidized by plants to create toxic quniones, which 

increase disease resistance (Kim et al., 2014). Additionally, caffeic acid has antimicrobial 

properties that can effectively suppress various fungi and bacteria (Kim et al., 2012; 

Rauha et al., 2000; Widmer and Laurent, 2006). 

 

2.3 Vermicompost 

2.3.1 Vermicompost Production  

 Vermiculture or vermicomposting is a non-thermophilic process that arises from 

the interactions between epigeic earthworms and mesophilic bacteria (Joshi et al., 2014). 

The process of vermilculture converts organic waste into a stable and nutrient-rich 

manure known as vermicompost (Joshi et al., 2014; Aira et al., 2000). Vermicompost can 

be made with diverse feeding stocks. Some organic feedstocks used include animal 

manure (Albanell et al., 1988; Wani & Rao, 2013), soft and alcoholic drink sludge 

(Orozco et al., 1996; Nogales et al., 2005), food waste (Arancon et al., 2004), and garden 

waste (Wani & Rao, 2013; Aremu et al., 2015).  Vermicompost production can also range 
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from simple low-technology systems in boxes or windrows, to large and complex 

breeding facilities (Orozco et al., 1996). Overall, production requires low-energy and 

labor inputs, and transformation efficiency is maintained through environmental 

conditions such as oxygen levels, light, temperature, and moisture (Sinha et al., 2009; 

Orozco et al., 1996). 

 Vermiculture systems vary in size/ complexity, organic waste input, worm 

selection, and end-product. Although vermicomposting facilities can differ, the process 

can be divided in between two distinct phases defined by earthworm activity (Dominguez 

et al., 2010). The first phase, or the “direct function phase” occurs when earthworms 

consume, digest, and assimilate organic matter (Dominguez et al., 2010; Huang et al., 

2014). This first phase alters the biochemical properties and microbial profiles in the 

system (Dominguez et al., 2010; Huang et al., 2014). The second phase, or the “indirect 

phase” happens when earthworms and bacteria coexist and cooperate to further 

decompose organic materials (Dominguez et al., 2010; Huang et al., 2014).  

 Earthworms are the main drivers of vermicomposting through the displacement, 

conditioning and digestion of the substrate (Suthar, 2009). With each movement, 

earthworms aerate and break down organic matter, altering its biological, physical, and 

chemical properties. Breakdown and conditioning of organic waste creates a favorable 

environment for microbial activity and decomposition (Suthar, 2009; Dominguez, 2004). 

Although feedstock, production system, and environmental conditions may affect the 

quality of the worm castings, earthworm species selection is the most important variable 

in vermiculture (Lim et al., 2016; Singh et al., 2011). Earthworm selection is crucial 
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because each species has different rates of waste stabilization and microbiota associations 

(Singh et al., 2011).  

To choose the correct earthworm species for vermicomposting, the species must 

have: a) high rates of organic matter consumption; b) high tolerance to stress; c) high 

reproduction rate; and d) rapid growth/ maturation time (Singh et al., 2011; Lim et al., 

2016). These characteristics align best with epigeic earthworm species. Epigeic 

earthworms are the most suitable for vermiculture because they live/ feed in the 

subsurface of the soil and they are highly effective decomposers (Lim et al., 2016). The 

most common species used in vermiculture are the Eisenia fetida and Eisenia andrei. 

Both species have a worldwide distribution, are resilient, and have a wide tolerance to 

temperature variations (Edwards et al., 2004; Lim et al., 2015; Suthar, 2009).  

 Environmental conditions must be heavily monitored to sustain a 

vermicomposting operation. Earthworms consume most organic materials in a pH of 5 to 

8, moisture content must be held 40% to 55%, and C/N ratios must be approximately 30 

(Singh et al., 2011; Lim et al., 2016). Since not all organic feedstock meet these 

parameters, organic waste is often mixed with bulking agents or undergone a pre-

treatment process (Yadav & Garg, 2011; Lim et al., 2016).  Different bulking agents can 

include cow/ chicken manure (Wani & Rao., 2013; Garg & Gupta, 2011), wheat straws 

(Suthar, 2009), garden/kitchen waste (Wani & Rao., 2013), and sawdust (Bustamante et 

al., 2013). Depending on the feedstock, bulking agents can a) help maintain pH at 

habitable levels; b) lower the concentration of noxious compounds/chemicals; c) increase 

nutritional value of waste; and c) enhance microbial activity (Suthar, 2009; Dominguez, 

2004; Suthar, 2006; Flegel & Schreder, 2000; Suthar, 2008).    
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2.3.2 Biological Composition of Vermicompost 

 Microbial dynamics in vermicompost are shaped by earthworm activity. 

Differences in microbial species richness and diversity can be attributed to the special 

nutritional interactions and requirements of the earthworm employed (Gopal et al., 2010). 

Passage through the earthworm’s gut also influences microbial communities. During gut 

transit, microbes are exposed to harsh anoxic conditions favoring an anaerobic and 

metabolically active microbial population (Gopal et al., 2010; Gomez-Brandon et al., 

2011; Yasir et al., 2009).  

Due to differences in vermiculture inputs, microbial communities may differ 

greatly in functional capacity and biodiversity. Several studies reveal the presence free-

living nitrogen fixers (Gopal et al., 2009), filamentous actinomycetes (Elmer, 2009), 

antifungal bacteria (Mu et al., 2017), beneficial fungi (Zhang et al., 2014), plant growth 

promoting rhizobacteria (PGPRs) (Sahni et al., 2008), proteobacteria (Yasir et al., 2009) 

and fluorescent pseudomonas (Elmer, 2009; Gopal, 2009). The incidence of these 

organisms may be indicative of other beneficial properties vermicompost may provide. In 

a study conducted by Gopal et al. (2009) explored the potential amplification of plant 

beneficial microbial communities through vermicomposting. Gopal et al. (2009) observed 

an increase in free-living nitrogen fixing bacteria, microaerophilic Azospirillum sp., and 

phosphate solubilizers, which increased the available nitrogen and phosphorous content 

in the composted litter used.  

Other studies such as Mu et al. (2017), Yasir et al. (2009), and Elmer (2009) 

found that an increase in beneficial microbial communities associated with anti-fungal 

and disease-suppressing properties. For example, Mu et al. (2009) was able to isolate a 
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broad-spectrum anti-fungal bacteria strain called Bacillus subtilis M29. Volatile 

compounds produced by the strain were extracted and identified (Mu et al., 2017). 

Purified compounds had antagonistic abilities against Botrytis cinera which causes gray 

mold disease (Mu et al., 2017). Similarly, Yasir et al. (2009) and Elmer (2009) found 

chitinolytic bacteria such as filamentous actinomycetes, florescent pseudomonas, 

streptomyces, and actinobacteria in vermicompost. The increase of chitinolytic activity is 

known to produce anti-fungal and anti-biotic compounds that may contribute to pest and 

disease suppression (Yasir et al., 2009). Compounds produced by actinobacteria are being 

researched and used to produce microbial antibiotics (Yasir et al., 2009; Yu et al., 2008).  

2.3.3 Physical and Chemical Properties of Vermicompost  

 Through earthworm-bacteria interactions, organic waste is physically and 

chemically transformed into a stable nutrient rich manure (Zhang et al., 2014). During 

vermicomposting, characteristics such as pH, electrical conductivity (EC), carbon and 

nitrogen ratios (C:N), macro/micronutrient content are modified (Nath et al., 2009). 

Changes in physical and chemical structures of the organic feedstock are caused by break 

down or mineralization of compounds (Nath et al., 2009; Aquino et al., 2019; Albanell et 

al., 1988). In a study conducted by Nath et al. (2009), researchers monitored the change 

in physical and chemical characteristics pre-vermicomposting and post-vermicomposting. 

Overall, vermicomposted materials showed a significant increase in nitrogen, 

phosphorous, potassium, and calcium, and a significant decrease in total organic carbon 

(TOC), C:N, EC, and pH compared to original feedstock (Nath et al., 2009). A decrease 

in pH is attributed to nitrogen and phosphorous mineralization and the conversion of 

organic materials into organic acids. Changes in TOC and C:N ratio, and an increase in 
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EC which were caused by carbon loss through microbial respiration and mineralization 

(Nath et al., 2009; Suthar, 2009; Elvira et al., 1998; Wong et al., 1997). Albanell et al. 

(1988) also reported similar changes in vermicompost by-product. Results only differed 

in EC values, which can be attributed to mineralization and high rates of humidification 

in the vermicompost tested (Albanell et al., 1988). Differences between results could be 

caused by feedstock, earthworm selection, and mineralization rates of different 

compounds. 

 These physical and chemical properties combined with a high nutrient content 

make vermicompost an ideal organic fertilizer. Although nutrient concentrations are an 

important factor for any soil amendment agent/ fertilizer, it is the presence of non-

hormonal plant growth promoters, phytohormones, and phenolic acids that separates 

vermicompost from other organic fertilizers. Several studies such as Aquino et al. (2019), 

Aremu et al. (2014), Ravidran et al. (2016), and Zhang et al. (2014) reported the presence 

of both compound types in vermicompost.   

Non-hormonal plant growth promoters like humic substances are found naturally 

in soil, water and organic deposits (Wong et al., 2015; Piccolo et al., 2002). Humic 

substances can be classified as humic acids (HAs), fulvic acids (FAs), and humins 

(Piccolo et al., 2002). A study lead by Fernández-Gómez et al. (2011) explored the 

chemical composition of vermicompost. Fernández-Gómez et al. (2011) showed that 

vermicompost made from different feedstock could contain 11.2- 53.9 g kg-1 of humic 

acid and 8.7 – 44.5 g kg-1 of fulvic acid. Other studies, such as Albanell et al. (1988), 

reported 14.4- 21.8% of humic acid and 2.8- 5.7% of fulvic acid in dry matter tested. 

Humic substances are known to improve cell growth and nutrient uptake through the 
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formation of soluble complexes with numerous ions (Canellas et al., 2010; Pinton et al., 

1999; Canellas et al., 2002). Furthermore, they act as root growth regulators by using cell 

auxin signaling to trigger growth (Canellas et al., 2010; Zandonadi et al., 2007; Dobbss et 

al., 2007).  

Humic substances extracted from vermicompost and their benefits have been 

examined by various scientist. For instance, Atiyeh et al (2002) used humic acids derived 

from pig manure vermicompost as a growth medium for tomato and cucumber seedlings. 

Atiyeh et al. (2002) noted that all seedlings treated with humic acid had a significant 

increase in growth and fruit yield. In another study by Arancon et al. (2003), researchers 

extracted humic acids from cattle, food scraps and paper waste vermicompost. Humic 

acids were applied to marigold, peppers, and strawberry crops (Arancon et al., 2003).  

Arancon et al. (2003) also observed that all plants treated had higher plant height, leaf 

area, shoot dry weight, and root dry weight.  

Unlike non-hormonal plant growth promoters, phytohormones are crucial for the 

growth and the regulation of physiological processes within the plant (Wong et al., 2015). 

Some regulatory functions include chlorophyll production, cell division and expansion, 

cell elongation, and the activation of bud growth and senescence (Wong et al., 2015). 

These compounds are grouped into classes: auxins, cytokinins (CKs), gibberellins (Gas), 

abscisic acid (ABA), salicylic acid (SA), jasmonates (JAs), brassinosteroids (BRs), 

strigolactones (SLs) and ethylene (Delatorre et al., 2017; Su et al., 2017). Although each 

phytohormone has a different function, they are effective through interactions among 

themselves through additive, synergistic, or antagonistic actions (Delatorre et al., 2017). 
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This mechanism is known as crosstalk (Delatorre et al., 2017; Kazan & Manners, 2012; 

Kohli et al., 2013).  

Interactions among phytohormones determines the effects that each compound 

may have on the plant. To determine the full benefits of vermicompost, it is important to 

identify and quantify phytohormones within the composted materials. Despite the lack of 

research, Zhang et al. (2015) was able to develop of a method for phytohormone 

identification in vermicompost. Through and optimized ultrasound-assisted extraction 

(UAE) and liquid chromatography- mass spectrometry (LC-MS/MS), Zhang et al. (2015) 

was able to successfully identify and isolate various types of cytokinins and auxins. 

Ravindran et al. (2016) also found the presence of phytohormones. Ravindran et al. 

(2016) reported the presence of cytokinins, auxins, and gibberellins in the vermicompost 

tested. Lastly, Aremu et al. (2014) found evidence of phytohormones and phenolic acids 

in garden-waste derived vermicompost leachate. Aremu et al. (2014) was able to identify 

and quantify different types of cytokinins, auxins, gibberellins, brassinosteroids and 

phenolic acids.  

2.3.4 Uses for Vermicompost  

2.3.4.1 Organic Fertilizer and Soil Amendment Agent  

 Vermicompost and its by-products are typically used as an organic amendment 

for soil and plant growth. Its high nutritional value, diverse biological activity, and the 

presence of beneficial compounds such as humic acids renders it an ideal fertilizer. 

Numerous studies support vermicompost usage as an organic fertilizer and soil 

amendment agent. Singh et al. (2008) studied the effects of vermicompost on the growth, 
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physiological disorders, fruit yield/quality of strawberry crops. Results demonstrate that 

vermicompost had a significant positive effect on flowering, number of fruits per plant, 

total yield, biomass, and incidence of physiological disorders in strawberry crops (Singh 

et al., 2008). Atiyeh et al. (2000) observed similar results while evaluating the effects of 

vermicompost and compost on plant growth in media and soil. Atiyeh et al. (2000) noted 

that marigold, tomato, and raspberry seedlings had higher weights, lower mortality rate, 

and higher biological activity within growth media (Atiyeh et al., 2000). Enhanced 

growth is attributed to the gradual release of macronutrients and micronutrients, and the 

high microbiological activity occurring in vermicompost (Atiyeh et al., 2000).   

 The addition of nutrients/ beneficial compounds and a change in biological 

activity can also benefit physiochemical properties of soil. For example, Azarmi et al. 

(2008) reported changes to the structure and chemical composition of soil after the 

addition of vermicompost. Azarmi et al. (2008) observed that EC, pH, organic carbon and 

nutrient composition increased, while bulk density decreased. Changes in EC suggests 

that cation exchange sites have increased in the soil, therefore increasing the soil’s 

potential to retain more nutrients. A decrease in bulk density and an increase in porosity, 

indicates a rise in the storage capacity and aeration of the soil (Azarmi et al., 2008).  

Manivannan et al. (2009) also observed an increase in porosity and cation exchange 

capacity, and a reduction in bulk density. Alterations in the physical structure of the soil 

may also arise from the presence of polysaccharides in worm castings (Lim et al., 2014). 

When present, polysaccharides act as a glue-like substance, increasing aggregation 

stability (Lim et al., 2014). In addition, mucus excreted from the worm’s gut and 
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microbial exudates may also lead to enhanced aggregate stability, aeration, and porosity 

in soil (Lim et al., 2014).  

2.3.4.2 Pest Suppressant and Biological Control Agent  

Biological control is defined as the practice of using living organisms or “natural 

enemies” to suppress or stop pest infestation/damage. Recently, farmers and scientist 

have been investigating vermicompost’s potential as a biological control agent because of 

its pest-resistant properties. Scientist speculate that pest-resistant properties are promoted 

by microbiological activity, the presence of plant growth regulators and non-hormonal 

plant growth regulators, and a balanced nutritional composition for plants (Arancon et al., 

2005). Proposed mechanisms for pest suppression via the addition of vermicompost may 

be general and specific (Simsek-Ersahin, 2011). Enhanced suppression could be 

attributed to various factors such as microbial antagonism, nutrient release, induced host 

resistance, and other abiotic inhibitory factors (Simsek-Ersahin, 2011). For instance, Mu 

et al. (2017) found that vermicompost inhibited the development of different fungal 

pathogens such as Botrytis cinerea or Gray mold through the volatile organic compounds 

released by symbiotic microbes. Some of the volatile organic compounds produced found 

were 1-butanol, 3-methyl-3-hexanol, 1-heptylene-4-alcohol, and acetic acid butyl ester 

inhibited the growth of mycelia completely (Mu et al., 2017).  

Arancon et al. (2005) also observed significant pest population and damage 

suppression after treating pepper, tomatoes, and cabbage crops. Results demonstrated that 

the addition of vermicompost to a soilless medium resulted in major suppression of all 

three types of insect attacks from aphids, mealy bugs, and cabbage caterpillars. Arancon 

et al. (2005) attributes pest suppression to nutrient availability. Vermicompost is 
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composed of biologically available nutrients that are slowly released as decomposition 

advances (Arancon et al., 2005). The “slow-release” process affects nutrient availability, 

offering the plant a more balanced dietary intake as compared to traditional inorganic 

fertilizer treatments (Arancon et al., 2005). A change in nutritional intake could affect 

morphological and physiological aspects of a plant, altering senescence, amino-N 

concentrations in phloem sap, sugar concentrations, and secondary metabolite production 

(Arancon et al., 2005; Patriquin et al., 1995).   

Finally, Edwards et al. (2010) studied the effects of vermicompost extracts on 

cucumber beetles and tobacco hornworm attacks. Edwards et al. (2010) found that all 

vermicompost treatments significantly decreased the establishment/damage of both pests 

on cucumber and tomato crops. Edwards et al. (2010) proposes that pest suppression 

might be caused by the presence and/or increase of phenolic substances. It is well known 

that phenolic substances are unpalatable to some invertebrates and could function as 

insect anti-feedant (Koul, 2008; Edwards et al., 2010). Other studies such as QiTan 

(2004) and Haukioja et al. (2002) found evidence for pest deterrent properties in phenolic 

substances. QiTan (2004) used phenols and phenolic acids extracted from ginko trees to 

deter caterpillar attacks. QiTan (2004) concluded that the extracts were as effective as 

several pesticides used to control caterpillar populations. Likewise, Haukioja et al. (2002) 

found that the incidence of phenolic substances in plant tissues lowered the rate of tissue 

consumption by caterpillars.    

2.3.4.3 Bioremediation  

Bioremediation is defined as the usage of microorganisms or plants to consume 

and break down environmental pollutants. To combat soil and organic waste toxicity, 
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vermicomposting technologies are being studied to evaluate its effectiveness as a 

remediation tactic. Utilizing vermicompost as a bioremediation practice is called 

“vermiremediation” (Suthar et al., 2014). Earthworms used in vermiculture have high 

tolerance to heavy metals and can easily absorb them into their tissues (Pattnaik & 

Reddy, 2011; Morgan & Morris, 1982). Additionally, earthworm- bacterial interactions 

create humic substances which could fractionate heavy metals reducing the amount of 

soluble or exchangeable fractions of metals (Pattnaik & Vikram Reddy, 2011; Edwards & 

Bohlen, 1996).   

 Chemical and metabolic process produced through earthworm-microbial 

interactions retain or immobilize heavy metal fractions. Various studies such as He et al. 

(2016), Suthar et al. (2014), and Pattnaik & Reddy (2011) have tested vermiremediation 

as a viable bioremediation practice. Suthar et al. (2014) examined the remediation 

through vermiculture of heavy metals in paper sludge waste produced from the paper and 

pulp industry. Results from their study suggest that all four heavy metals studied (Pb, Cu, 

Cd, & Cr) experienced a significant decrease across observed time. Although all metals 

decreased over time, Cadmium (Cd) and Lead (Pb) decreased faster over time. This 

observation indicated that heavy metal speciation is different for all metals, and is 

dependent on different abiotic factors produced through earthworm-microbial interactions 

such as pH, organic matter content, electrical conductivity, etc. Suthar et al. (2014) study 

also evaluated bioaccumulation of heavy metals in earthworm tissues. High 

concentrations of heavy metals in tested tissues indicates that heavy metals were 

accumulated. Thus, the decrease of heavy metals was correlated to earthworm action.  
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Pattnaik & Reddy (2011) evaluated heavy metal remediation through the 

vermiculture of three different earthworm species. Five different heavy metals (Cd, Pb, 

Zn, Cu, & Mn) were observed. Results showed that tissue accumulated heavy metal 

concentrations were significantly different and could be negatively correlated with heavy 

metal concentrations in the treated waste. Moreover, results indicate that different 

earthworm species have a high rate of accumulation, which means that accumulation and 

heavy metal speciation can be a species-specific action.  

 2.3.5 Vermicompost Tea and Extracts  

 Vermicompost tea or extract refers to brewed water extracts of previously 

composted materials (Gomez-Brandon et al., 2015). During the brewing process, most 

valuable aspects such as mineral nutrients, biologically active metabolites, and beneficial 

microbes of vermicompost are transferred to vermicompost tea (Mishra et al., 2017). 

Because of their proven effectiveness and enhanced application control, many have opted 

for their usage. Vermicompost tea is usually applied as a soil/foliar drench or spray 

(Simsek-Ersahin, 2011). Although commercial production and usage of vermicompost 

tea has skyrocketed, effects in plant growth and pest suppression are poorly understood.  

2.3.5.1  Vermicompost Tea Production  

 Vermicompost tea is categorized through two different production methods, 

aerated and non-aerated (Gomez-Brandon et al., 2015; Mishra et al., 2017). Aerated 

vermicompost teas are produced by aerating the compost-water extracts continuously 

during the brewing process, whereas non-aerated teas allow vermicompost to steep 

passively with little to no agitation (Gomez-Brandon et al., 2015; Litterick and Wood, 
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2004). Both methods require incubation and filtration prior to application (Gomez-

Brandon et al., 2015).  

Aerated production methods are associated with several advantages such as 

shorter brewing time, greater microbial diversity, lower phytotoxicity, and lower levels of 

human pathogen reproduction as compared to non-aerated tea production (Ingham and 

Alms, 2003; Gomez-Brandon et al., 2015). Despite these observed advantages, non-

aerated teas are preferred over aerated teas (Gomez-Brandon et al., 2015). Non-aerated 

production methods are easier and require less energy and specialized materials as 

compared to aerated tea production (St. Martin and Brathwaite, 2012). While both 

production methods yield the same by-product, scientist disagree which produces the best 

results. 

Differences between the benefits of aerated and non-aerated teas might be directly 

influenced by the brewing time. Vermicompost teas are usually brewed for 24 hours in 

shaded and temperate areas (Kiyasudeen et al., 2015). With enough brewing time, non-

aerated tea could be as effective as aerated teas at enhancing plant growth and deterring 

pests. Koné et al. (2009) reported that non-aerated compost teas brewed for two weeks 

were able to inhibit foliar fungal pathogens in tomatoes. Welke (2005) observed no 

significant difference between growth and yield increase between aerated and non-

aerated tea. Although statistical differences were not observed, overall yields were higher 

in aerated tea. Welke (2005) suggests that this is likely caused by the concentration of 

plant growth promoting hormones and micronutrients from aerobic microorganisms.  

Contrasting results were also observed when the dilution rate of vermicompost tea 

was tested. For example, Welke (2005) did not observe any significant difference 
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between high and low ratios of vermicompost tea. Whereas Edwards et al. (2010) 

observed that the higher water-vermicompost ratio in tea, the higher the increase in 

overall plant parameters measured. Results demonstrated that out of the three 

vermicompost concentrations (5%, 10%, and 20%), 20% suppressed pest 

damage/incidence and significantly increased biomass.  

Other chemical and biological characteristics in vermicompost tea may vary due 

to differences in inputs and production processes. High nutrient levels and biological 

activity are needed in each mixture to ensure beneficial results. To strengthen microbial 

populations, additives such as molasses, kelp, humic acids, or fish emulsion might be 

included in the mix (Duffy et al., 2004; Kiyasudeen et al., 2015). Although additives are 

an attractive option to boost tea production, the presence of carbohydrate-rich materials 

might encourage the growth of human pathogens (Kiyasudeen et al., 2015).  

2.3.5.2 Beneficial Aspects of Vermicompost Tea 

 Vermicompost tea and extracts share all the beneficial properties vermicompost 

has on plant growth, enhanced pest suppression, and disease incidence. For this reason, 

many studies support the usage of vermicompost tea as liquid fertilizer or as a biological 

control agent. For example, Pant et al. (2009) observed that all vermicompost treatments 

implemented enhanced plant production, mineral nutrients, and total carotenoids in pak 

choi compared to the control treatment. Growth enhancement was attributed to the 

considerable amount of soluble mineral nutrients present in vermicompost tea (Pant et al.; 

2009).  

 Similar results were also observed by Renčo and Kováčik (2015) when studying 

the effects of vermicompost tea on potato crops. Researchers observed that all 
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vermicompost treatments significantly affected growth compared to the control treatment. 

Renčo and Kováčik (2015) also noted that vermicompost tea treatments successfully 

suppressed nematode population and egg hatchings. Mishra et al. (2017) also observed a 

decrease in root penetration and egg viability in nematode populations on cucumber crops 

after the addition of vermicompost tea. Finally, Singh et al. (2003) tested the efficacy of 

vermicompost tea extracts to control powdery mildews on balsam and pea plants. Singh 

et al. (2003) recorded that even very low concentrations of the tea had a significant 

decrease in disease intensity over time and concluded that the usage of vermicompost tea 

as a foliar spray could be a cost-effective disease prevention practice.   

2.3.6 Vermicompost and Chemical Elicitation  

 Vermicompost is composed of natural plant growth regulators, phenolic 

compounds, and other phytohormones that contribute to growth stimulation, yield, as 

well as a change in the chemical composition of the plant (Aremu et al., 2014). Various 

studies have recorded vermicompost’s effect on secondary metabolites and/or the 

essential oil content in different crops. Elicitation of change could arise from the 

improvement of soil structure and biological activities, higher retention of mineral 

nutrients and the presence of diverse phytohormones and compounds (Darzi et al., 2015). 

Increase of mineral uptake and retention has a positive effect on biomass production, 

subsequently enhancing the essential oil content (Darzi et al., 2015).  

Heidarpour et al. (2019) observed an improvement in essential oil content of 

Satureja hortensis L. following several vermicompost treatments. Heidarpour et al. 

(2019) noted that the higher the vermicompost application, the higher the oil content in 

the plant. Plants treated with 30% vermicompost, the highest percentage, had a greater 
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amount monoterpene and sesquiterpene compounds (Heidarpour et al., 2019). Increased 

secondary metabolite content was also related to the combination of abiotic stress 

endured by the plant. Anwar et al. (2004) yielded similar results when studying the effect 

of organic manures on the essential oil quality and yield in French basil. Anwar et al. 

(2004) concluded that the larger the amount of vermicompost added, the greater the 

essential oil content in the plant. Despite having the highest percentage of essential oil 

content and principal chemical compounds found in basil oil, the lower treatment of 

vermicompost performed the best in terms of combined effects in plant growth, yield, and 

essential oil content and quality.  

Darzi et al. (2015) also observed an increase in essential oil compound following 

the application of vermicompost. The maximum percentage of essential oil content was 

obtained by adding 6 tons of vermicompost per hectare, further addition decreased oil 

content (Darzi et al., 2015). Similar results were also seen by Javanmardi & Ghorbani 

(2012) when comparing the effects of vermicompost tea and chicken manures on 

secondary metabolite production in lemon basil. The highest essential oil content was 

recorded in 1:10 vermicompost tea treatment, which was 3.12 times higher than the 

control plants (Javanmardi & Ghorbani, 2012). Total phenolics was also higher in 1:10 

vermicompost tea treatment, although total flavonoids and total antioxidants were greater 

in 1:5 vermicompost tea treatment, a lower ratio of water and tea (Javanmardi & 

Ghorbani, 2012).  
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2.3.7 Effects of Vermicompost in Tomatoes 

2.3.7.1 Effects on Biomass and Yield 

 Vermicompost has a positive and significant effect on the growth, quality and 

productivity of crop plants (Singh et al., 2010). Research on medical and vegetable-

producing crops show evidence to support vermicompost’s effects on seed germination, 

biomass production, root development, yield, and marketable yield (Singh et al., 2008; 

Atiyeh et al., 2000; Azarmi et al., 2008; Lim et al., 2014). Positive effects have also been 

recorded in different tomato cultivars. 

 For instance, Singh et al. (2010) studied the effect of vermicompost and NPK 

fertilizer in the hybrid tomato cultivar Avinwash-2. Results demonstrated that 

vermicompost treatments had a significant effect on plant height and leaf biomass. 

Overall, yield was unaffected by the addition of vermicompost except fruit weight (Singh 

et al., 2010). Elevated fruit weights might be due to the stimulation of production or 

accumulation of naphthalene acetic acid, an auxin hormone, which plays a crucial role in 

flowering and fruit setting (Singh et al., 2010).  Gutierrez-Miceli et al. (2007) also saw a 

significant increase in plant sizes and marketable yield. The greatest plant heights and 

leaf numbers were obtained after treating plants with a 1:4 soil-vermicompost mixture 

(Gutierrez-Miceli et al., 2007). Results were alike those observed in Singh et al. (2010) 

study, highlighting that despite no significant increase in yield after the addition of 

vermicompost, the marketability of the fruit increased (Gutierrez-Miceli et al., 2007). A 

1:1 soil-vermicompost mixture increased marketable yield by 1.8% as compared to 

control yield (Gutierrez-Miceli et al., 2007).  
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Bahrampour & Ziveh (2013) observed similar yet contrasting results while 

studying the effects of vermicompost in tomato fruit. Results revealed that the highest 

concentration of vermicompost in soil significantly increased growth and yield compared 

to control plants. Tomato plants treated with vermicompost had higher leaf area, shoot 

dry weight, and total yield (Bahrampour & Ziveh, 2013). Additionally, fruit weight and 

elemental leaf content of the plant was also significantly increased.  

2.3.7.2 Effects on Pest and Disease Suppression 

 Vermicompost is known to suppress pest populations and pathogen infection in 

tomato plants. Various studies such as Sedaghabaf et al. (2017), Szczech (1998), and 

Mohamadi et al. (2016) showcase enhanced plant defenses after vermicompost treatment. 

For instance, Sedaghatbaf et al. (2017) tested the effects of four types of vermicompost 

on whitefly populations in tomatoes. Sedaghatbaf et al. (2017) observed that all 

vermicompost treatments had a significantly lower number of whiteflies established 

compared to plants treated with conventional fertilizer. Pistachio waste derived 

vermicompost treatment outperformed all other treatments (Sedaghatbaf et al., 2017). 

Enhanced pest resistance can be correlated with an increase in total phenolic compounds 

(Sedaghatbaf et al., 2017). A bioassay on the tomato leaves revealed that pistachio waste 

vermicompost contained a greater amount of total phenolic compounds compared to 

other treatments (Sedaghatbaf et al., 2017). Phenolic compounds are known to play a 

major role in herbivory and pathogen defense (Bhattacharya et al. 2010). The addition of 

vermicompost could have elicited change in secondary metabolite production, resulting 

in enhanced pest resistance.  
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 Increased pest and pathogen resistance can likely be attributed to a combination of 

physical and chemical changes to the plant’s physiology. Mohamadi et al. (2016) found 

that moths reared on plants treated with 40% vermicompost and 2g/kg of humic fertilizer 

had lower fecundity and shorter lifespans as compared to plants fertilized with inorganic 

agrochemicals. The combination of vermicompost and humic fertilizer also had higher 

biomass compared to the other treatments (Mohamadi et al., 2016). This result suggests 

that pest invasion might be tied to plant nutrition (Mohamadi et al., 2016). Organic 

amendments such as vermicompost provide a more balanced source of nutrition for plant 

growth which might deter pest invasion in tomato plants (Mohamadi et al., 2016).  

 Different external factors such as the presence of beneficial microorganisms can 

also contribute to pathogen and pest suppression. High microbiological activity in 

vermicompost is a major contributing factor in pathogen resistance. Szczech (1998) 

observed that the addition of vermicompost in potting media inhibited Fusarium 

oxysporum f. sp. infection in tomato plants. Treatments above 30% entirely inhibited 

infection (Szczech, 1998). Moreover, vermicompost also strongly inhibited the growth of 

F. oxysporum in agar medium (Szczech, 1998). Hyphae treated with vermicompost were 

destroyed and colonized by microbes (Szczech, 1998). Phytophthora infestans or Late-

Blight, another fungal pathogen, is also inhibited by the presence of vermicompost. Zaller 

(2006) reported that plants treated with vermicompost foliar spray had significantly lower 

incidence of late-blight compared to control treatments which are also accredited to the 

presence of beneficial microbes producing antagonistic compounds (Zaller, 2006).  
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3. METHODOLOGY 

3.1 Site Description 

The study was conducted at Florida International University’s (FIU) Organic 

Garden in Miami, Florida. The one-acre farm is home to student/faculty-run projects, 

including a food forest, ornamental and vegetable beds, as well as other experimental 

plots. No synthetic pesticides are used. Organic fertilizers such as fish emulsion and 

chicken manure are applied throughout the garden. The garden is considered transitioning 

and does not yet have proper organic certification. (SW 17th St, Miami, FL 33174 

Coordinates: 25.754169, -80.345069). 

3.2 Experimental Design 

A potted study was conducted at an enclosed field at FIU’s Organic Garden. 

Within the enclosed field, two hoop houses (Dimensions: 26ft x 10ft) were installed 

(Figure 1). Planting began on March 20, 2019 and ended July 2, 2019, which equals to 

104 days of growth. Four tomato seeds of BHN589 variety were sowed into 430 five-

gallon pots (Dimensions: 10.25” L x 11.8” W) which were filled with 70% sandy loam 

acquired from the FIU Organic Garden and 30% Sungro Professional Potting Metro-

Mix® 830 potting soil. A month after planting, seedlings were thinned and assigned a 

treatment/ID number. Subsequently, pots were grouped by treatment and arranged using 

a randomized block design. The treatments used within the experiment were three 

different vermicompost tea treatments ranging from 1:20 (T5%), 1:15 (T10%), and 1:5 

(T20%) ratios of vermicompost and water, and a control group. To avoid bias, all plants 

were treated with 100ml of Miracle-Gro® Water Soluble Tomato Plant Food fertilizer 
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(18-18-21 NPK) every two weeks. Preparation and application of vermicompost tea 

treatments occurred every week. Treatments were applied through soil and leaf drench.  

 

3.2.1 Preparation of Vermicompost Tea 

 To prepare vermicompost tea, 100kg of organic SimpleGrow® Worm Castings 

was purchased. To brew the vermicompost tea, three EcoAir TM Commercial Air pumps 

produced by EcoPlus (California, USA) with a maximum capacity to pump 94L and 10-

gallon plastics bins were used. Vermicompost was homogenized to ensure even 

distribution of nutrients and other beneficial compounds. To homogenize the 

vermicompost, all purchased vermicompost was mixed before tea preparation. 

Vermicompost tea production followed Edwards et al. (2010) brewing methods. Varying 

Figure 1 Arrangement of Experimental Plots. a) Pots arranged inside hoop house used 
for germination stages of the plant. b) Hoop house construction. c) Example of how 
treatments were arranged within the infrastructure. 
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amounts of vermicompost were placed in a canvas sheet and immersed in water (Table 

3). The mixture was aerated for 24hrs at FIU’s Soils Lab in a shaded and temperate 

environment. Once brewing time elapsed, the mixture was transported to research plots 

and dispersed. Vermicompost and fertilizer treatments began four weeks after planting 

and was repeated every week for the duration of the experiment.  

 

Table 3 Proportion of Ingredients Used for Vermicompost Tea Production 

Treatment Ratio 

(Vermicompost: Water) 

Water 

(L) 

Vermicompost 

(kg) 

Control N/A N/A N/A 
T5% 1:20 22.7 1.08 

T10% 1:10 22.7 2.17 
T20% 1:5 22.7 4.35 

 

3.2.2 Field Sampling and Data Collection Methods  

3.2.2.1 Leaf Chlorophyll Concentration 

 To monitor and compare plant health across all treatments, the average leaf 

chlorophyll concentration of each plant was measured using the Soil-Plant Analyses 

Development (SPAD) 502 Plus Chlorophyll Meter every month, for a total of three 

readings. Twenty randomly selected plants from each treatment were sampled following 

Freidenreich et al. (2019)’s sampling protocol. Each leaf selected was sampled three 

different times. The concentration values were averaged for each leaf measured. A 

SPAD-502-meter measures the transmittance of red and infrared light through the leaf, 

calculating a value that is relative to the concentration of chlorophyll present in the 

sample (Uddling et al., 2007). Chlorophyll concentrations are generally a good indicator 

for plant health (Freidenreich et al.,2019). Low SPAD values are an indication of 
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yellowing or chlorosis in leaves, which are symptoms associated with nutrient deficiency 

and a multitude of diseases in plants (Freidenreich et al.,2019).  

3.2.2.2 Soil pH, Yield and Plant Height   

 Soil pH measurements were taken during the first and last week of the 

experiment, utilizing a Fieldscout pH 400-meter probe. Twenty plants were randomly 

selected at the beginning and end of the experiment. pH values were averaged and 

analyzed across all treatments. Weeks prior to termination, ripe tomatoes were counted, 

harvested and weighed using a digital kitchen scale. Harvesting occurred five different 

times during the month of June and July to ensure tomatoes were collected while they 

were ripening. Lastly, plant height was measured at termination of the experiment. 

Twenty randomly selected plants from each treatment were measured following 

Nagashima and Hikosaka (2011) height measuring protocols. To guarantee accurate 

results, tomatoes were measured from the lowest stem node to the uppermost shoot.  

3.2.2.3 Above and Below Ground Dry Biomass 

 Following termination (104 DAP), twenty randomly selected samples of shoot 

and root mass per treatment were collected. Shoots samples collected were composed of 

stem and leaf biomass and were harvested from the first node up. Roots were carefully 

washed, ensuring all soil particles and debris was removed from the biomass. After 

sample collection, shoot and root samples were dried at 70 °C for 72hrs in a Thermo 

Scientific Precision drying oven. Once samples were completely dried, they were 

weighed to the second decimal point of a gram. 
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Figure 2 Sample Preparation for GC/MS Analysis 

 

3.2.2.4 Biomass Sampling for Secondary Metabolite Profiling  

 To conduct secondary metabolite profiling via GC/MS analysis and Total 

Phenolics Bioassay, leaf samples were collected every three weeks. Prior to sampling, 

twelve plants from each treatment were randomly selected. Following Dong et al. (2011) 

biomass collection method for secondary metabolite testing, three leaf samples were 

randomly collected from the upper, middle, and lower part of the crop. Immediately after 

harvesting, biomass samples were placed in paper tea bags and frozen in liquid nitrogen 

for 10 seconds. Subsequently, samples were placed in dried ice and were stored in a -80 

◦C freezer awaiting chemical testing.  

3.3 Secondary Metabolite Profiling  

3.3.1 Sample Preparation for GC/MS Analysis 

 Previously collected leaf samples were sorted and freeze-dried at -65ºC. After 

freeze drying, samples were homogenized and ground into a fine powder using a Fischer 
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Scientific TM Bead Mill 24. All samples were grinded for 1 minute at a speed of 5,000 

rpm. After samples were ground, 150 mg (+/- 1) was subsampled for analysis. To 

accurately subsample the ground powder, an analytical balance was used. Subsamples 

were placed in a spin column to complete extraction. This protocol was developed and 

modified by Dr. Diego Salazar- Amoretti.   

3.3.2 Secondary Metabolite Extraction 

 Following Lisec et al. (2006) secondary metabolite extraction protocols, a 250 ml 

reagent with an Ethanol and Dichloromethane solved 1:1 mixture was made. To ensure 

pipetting and GC/MS injection errors could be detected and normalized throughout all 

chemical analysis, 45mg Piperine and 100µl Citronelle were added as internal standards 

to the mixture. Before adding the mixture, spin columns containing the samples were 

attached to glass vial insert and placed inside a microcentrifuge tube. Once the inserts 

were assembled, two aliquots of 150µl of solvent were added to each sample. Prepared 

microcentrifuge vials were then placed in a Sorvall Legend Micro 21 Centrifuge. 

Samples were centrifuged for four minutes at 5,000 rpm. Once the extraction process was 

completed, glass vial inserts were removed with tweezers from microcentrifuge vials and 

placed into 2 mL glass vials for GC/MS analysis. This secondary metabolite extraction 

protocol is only viable for acidic metabolites. For this reason, alkaline metabolites such 

as glucosinolates and alkaloids were not detected.  

3.3.3 GC/MS Analysis 

 The GC/MS analysis of various organic extracts of Solanum lycopersicum leaves 

was performed on an Aligient Technology 5977A GC/MSD system fitted with a glass 



43 
 

column (30 m x .25 mm x .25 µm, maximum temperature, 350º C). Ultra-high purity 

helium (99.9%) was used as a carrier gas at a constant flow rate of 1.2 mL/min. Injector 

was programed to uptake 3 µL of each sample with a split ratio of 1:1. Before and after 

injecting the sample for analysis, the needle was washed with Hexane and 99.9 % 

Ethanol. The initial oven temperature was set to 65º C to 250º C at a rate of 15º C/min. 

All data were obtained by collecting the full-scan mass-spectra and evaluating/ 

identifying peaks of high proportion (peak area above 5.4x107). The peak area is 

presented as a percentage normalized using citronellol internal standard which was 

calculated by dividing the relative area of each compound by the citronellol’s area. 

Internal standards were added to account for pipetting or injection errors and to ensure 

that data obtain could be comparable to each other.  

Identification and characterization of chemical compounds detected was based on 

GC retention time and m/z (mass to charge ratio). To identify the compounds, GC/MS 

spectra was analyzed in Openchrom through peak identification and integration 

capabilities. Subsequently, AMDIS and NIST (National Institute of Standards and 

Technology) database was used to identify individual compounds.    

3.3.4 Total Phenolics Bioassay  

 Grinded samples were subsampled for 100 mg (+/- 1) and prepared for extraction. 

Extraction was performed using 1 ml of 70% Methanol solvent and 2 ceramic beads. 

Mixture was homogenized in a Fischer Scientific TM Bead Mill 24. Samples were 

centrifuged in Sorvall Legend Micro 21 Centrifuge for 5 minutes at 14,800 rpm to 

separate cell debris and supernatant. Subsequently, 40 ml of the supernatant was 

transferred into 2.0 ml snap vials. A blank standard and a positive control were prepared. 
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The positive control added was Gallic acid. Gallic acid is a simple phenol found in most 

plants.  

 Once the extraction is ready, 750 ml of 10% Methanol is added to the supernatant. 

100 ml is transferred into three separate 2.0 ml snap vials. This means that each sample 

will be tested three separate times. This is to ensure that no major errors were committed 

during the extraction and transfer process. Following transfer, 200 ml of 10% (v/v) Folin 

reagent and 1 ml of Na2CO3 (0.7M) were added to the samples. The final mixture was 

placed in an IKA Trayster for 5 minutes to be homogenized. Additionally, the samples 

were placed in a 30º C dry bath for 15 minutes. Samples are transferred one last time into 

cuvettes. Finally, the supernatant was analyzed using a Thermo Scientific Genesys 30 

Visible Spectrophotometer. Total phenolics were quantified using a gallic acid 

equivalent. The light absorbency value provided by the spectrophotometer for each 

sample was plugged into the regression formula below. The final value for total phenolics 

is expressed in grams of Gallic acid equivalent. The regression formula was developed 

using Gallic acid serial dilutions tested in the spectrophotometer.   𝐆𝐚𝐥𝐥𝐢𝐜 𝐀𝐜𝐢𝐝 𝐄𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 (𝐠) = 𝟕𝟎. 𝟖𝟎𝟗𝟗𝟒 𝐱 − 𝟏. 𝟕𝟎𝟓𝟔 

Equation 1 Regression Formula for Gallic Acid Equivalent Values 

 

3.4 Statistical Analysis  

 Data analysis was performed utilizing R version 3.5.3 (Great Truth) and JPM14. 

One-way and two-way ANOVAs were performed to test for significance across treatment 

type and time. To determine which treatment groups were different from each other, a 

TukeyHSD test was also conducted. P≤ 0.05 was considered statistically significant.  
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4. RESULTS AND DISCUSSION 

4.1 Physical Results  

4.1.1 Above and Below Ground Biomass, Stem Height, Leaf Chlorophyll Concentration, 

and Soil pH  

 

 

Plant growth response to varying vermicompost tea treatments was evaluated by 

monitoring and measuring physical parameters such as dry above and below ground 

biomass (Figure 3), stem height and leaf chlorophyll concentrations. During termination, 

stem height was measured. The greatest mean heights were observed in T20% treated 

Figure 3 Bar graph depicting differences in above and below ground biomass (g) across treatment 
type. Treatments consisted of various vermicompost treatment types (T5% =1:20, T10%= 1:10, 
and T20%= 1:5). Values are expressed as mean and each treatment consisted of n=20. Error bars 
are one standard deviation from the mean. 
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plants (82.83 ± 19.9 cm), followed by T5% (78.02 ± 20.6 cm), T10% (74.02 ± 21.3 cm), 

and Control (64.53 ± 25.8 cm). None of the treatments were significantly different to 

each other (p >.05). Although differences were not significant, T20% and Control were 

the most different with a p = .0505.  

After termination, all above and below ground biomass samples were harvested 

and dried. The highest mean dry above ground biomass observed was T20% (31.78 ± 

14.5g), followed by T5% (26.57 ± 10.7 g), T10% (24.56 ± 13.9 g), and Control (19.62 ± 

11.4 g) (Figure 3). A One-way ANOVA determined that above ground weight was 

significantly different throughout the treatments (p < 0.05). A TukeyHSD test was 

conducted to assess differences between the treatments. T20% treatment was 

significantly higher (p ≤ 0.05) than Control treatment. Although the remaining 

vermicompost tea treatments had greater mean dry above ground biomass as compared to 

the Control, the treatments were not significantly different from each other. Therefore, 

T5% and T10% did not have any noticeable effects on above ground biomass weight. 

The greatest dry below ground biomass was T20% (11.58 ± 2.6 g), then T10% (11.25 ± 

3.4 g), T5% (10.61 ± 2.2 g), and Control (10.0 ± 3 g). A one-way ANOVA determined 

that there was no significance between treatments (p.> 0.05). Vermicompost tea 

treatments had no significant effect on below ground biomass.  
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Figure 4 Example of SPAD readings taken during the experiment. a) Low SPAD reading 
taken on tomato plant experiencing chlorosis. b) Moderate-high reading taken from 
healthy tomato plant.  

 

To determine the effect of vermicompost tea treatments on leaf chlorophyll 

concentration, Soil Plant Analytical Development (SPAD) readings were taken monthly 

(Figure 4). SPAD values varied slightly overtime. From April (1D) to May (2D), all 

treatments experienced higher SPAD values. SPAD values once again decreased in June 

(3D) for all treatments. The highest mean SPAD value was T20% (46.52 ± 9.9), 

subsequently T5% (44.52 ± 8.4), T10% (44.03 ± 12), and Control (41.93 ± 9.6). 

Statistical analysis revealed that there was no significant different between any of the 

treatments and collection dates. Chlorophyll concentrations were unaffected by 

vermicompost tea treatments. 
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Finally, soil pH was measured before cultivation, and after termination of tomato 

plants. Soil pH readings were taken to determine if a change in acidity might enhance 

growth. Initial pH for all treatments was slightly alkaline soil (pH 7.24). At termination, 

the mean lowest soil pH was T20% (pH 6.75 ± 0.3), followed by T5% (pH 7.03 ± 0 .4), 

T10% (pH 7.20 ± 0.2) and Control (pH 7.19 ±). A One-way ANOVA revealed that the 

treatments are significantly different (p ≤ 0.05). To determine how the treatments differed 

from each other a TukeyHSD test was conducted. Results indicate that soil pH in T20% 

treated pots was significantly lower (p ≤ 0.05) than T10% and Control treatments. T20% 

treatment had a significant effect on soil pH. 

4.1.2 Fruit Weight and Yield 

 Tomato fruits were harvested multiple times during the month of June. The 

harvesting process was affected by continuous inclement weather, damaging and 

deforming tomato fruits (Figure 5). To assess yield, only marketable tomatoes were 

Figure 5 Tomatoes. A) Healthy tomato during early growth stage. b) Tomatoes damaged 
due to inclement weather. 
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counted and weighed. Total yield produced was 302 tomatoes. The greatest yield was 

produced by plants treated with T20% vermicompost tea (89), closely followed by T10% 

(88), then T5% (70) and Control (55). After harvest, fruits were weighed in scale. The 

largest fruits were produced under T10% (76.86 g), followed by T20% (68.33 g), Control 

(64.11 g) and T5% (55.17 g). Each treatment presented high variability around the mean. 

There was no significant difference found among the treatments (p > 0.05). 

4.1.3 Mortality 

 Mortality rate was assessed during termination. Only plants with >70% dried and 

discolored leaves/ stem were considered.  Overall, 19.76% of tomato plants perished. The 

highest mortality rate was quantified by dividing individual deaths per treatment and total 

individuals per treatment. The highest mortality rate was experienced under treatment 

T5% (23.4%), followed by Control (20.5%) and T20% (20.5%), and T10% (14.9%). 

Mortality rate was significantly affected by leaf harvesting, 65% of all sampled seedlings 

perished.  

4.1.4 The Effect of Vermicompost Tea Treatments on Solanum lycopersicum  

 Plants treated with T20% vermicompost tea had greater above ground biomass, 

SPAD values, yield, and lower pH. Physical parameters indicated that the highest 

concentration of vermicompost tea did affect the growth and development of the plant. 

Results with physical parameters are consistent with previous findings. For instance, 

Singh et al. (2010) and Bahrampour & Ziveh (2013) reported that vermicompost 

treatments had a significant effect on plant height and biomass. Although there was no 

significant difference in plant height and below ground biomass, T20% treated plants did 
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have the greatest total biomass and height compared to any other treatment. Plant height 

and biomass was lowest in Control treated plants. All plants were fertilized with equal 

amounts of fertilizer biweekly, which indicates that vermicompost tea treatments, 

specifically T20% enhanced developmental parameters in BHN589 tomato plants. 

Enhanced growth might also be attributed to pH of the soil. Tomato cultivation requires a 

slightly acidic soil pH. T20% had a significant lower soil pH than Control treated plant 

which would have also contributed to increased growth.  

SPAD values indicating chlorophyll values was also highest in T20%. SPAD-

503- meter measures the transmittance of red and infrared light through leaf tissues, 

calculating relative concentration of chlorophyll for the plant (Udding et al., 2007). 

Chlorophyll concentrations are an indicator for plant health. Low chlorophyll 

concentrations could indicate nutrient deficiency or a pathogen infection through 

symptoms of chlorosis (Freidenreich et al., 2019). The lowest chlorophyll concentrations 

were found in Control treated plants, which might be an indicator for dwindling plant 

health.  

Results for fruit yield and weight (g) were affected by inclement weather during 

the harvesting period. For this reason, fruits that were viable and marketable were only 

considered. Tomato counts were highest in T20% treated plants, and lowest throughout 

the Control group. Despite differences, there was no significant difference across 

treatments. Guitirrez-Miceli et al. (2007) and Singh et al. (2010) both reported no 

significant difference in yield across all vermicompost treatments. However, both studies 

reported a significant increase in fruit weights in tomato plants treated with 

vermicompost. Contrasting results were found in this study. The highest fruit weights 



51 
 

were observed in T10% treated plants, and lowest in T5% treated plants. There was no 

significant difference between any treatment. Differences among results may be 

attributed to vermicompost tea components. Singh et al. (2010) credited the increase in 

fruit weights to production or accumulation of naphthalene acetic acid, an auxin 

hormone, which plays a crucial role in flowering and fruit setting. 

Mortality rate across treatment was affected by sampling. Due to weight and size 

of leaf biomass, multiple sampled had to be harvested from each plant. Decreasing 

photosynthetic area and wounding stem could have facilitated sunlight deficiency or 

pathogenic infection.  

4.2 Chemical Profiling Results  

 To determine chemical change across treatment and time, 64 tomato leaf samples 

were tested using GC/MS analysis. Fifty-eight compounds were detected and identified 

using the NIST database and sixteen compounds were selected to be further analyzed.  

Compounds found were classified by their secondary metabolite type: phenolic 

compounds, terpenoids, fatty acids and alkanes (Table 4). Furthermore, leaf samples were 

also analyzed using a Total Phenolics bioassay through a spectrophotometer.  
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Table 4 List of Secondary Metabolites Detected by GC/MS Analysis 

Secondary Metabolite Type  Compound Detected  

Phenolic Compounds  Eugenol 

 α -Tocophenol  

 Phenol, 4-ethenyl-2,6-dimethoxy- 

 Triphenyl phosphate  
Terpenoids  
     Monoterpene β-Phellandrene 

     Diterpene Phytol 

     Triterpenes/ Sterols γ-Sitosterol 

 Stigmasterol 

 Campesterol 

 Lupeol 

 β-Amyrin 

 Stigmasta-5,24(28)-dien-3-ol, (3.beta.,24Z)- 

 Squalene 

     Steroid Precursors 9,19-Cyclolanost-24-en-3-ol, (3β)- 
 9,19-Cyclolanostane-3,7-diol 

 9,19-Cyclolanost-24-en-3-ol, acetate, (3β)- 
     Tetraterpenes/ Carotenoids Lycopersene 

      Rhodopin 
Alkanes/Paraffins Dotriaconte 

 Hentriaconte 

 Heptacosane 

 Nonacosane 

 Tritriaconte  
 

Fatty Acids Linolic acid  

 Docosanoic acid 

 Octadecanoic acid 

 Trans-3- Hexenoic acid 

 Hexadecanoic acid  
 Dimethylaminoethyl palmitate 

 
Glycosides Stevioside 

Other Cyclononasiloxane, octadecamethyl- 

 Ethyl iso-allocholate 

 Ergosta-5,24(28)-dien-3-ol, (3β)- 
 Lup-20(29)-ene-3,21,28-triol, 28-acetate, (3β,21β)- 
 Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate 
 Octadecane, 3-ethyl-5-(2-ethylbutyl)- 
 Unknown  

 Unknown 
2-Methyltriacontane 
6a,14a-Methanopicene, perhydro-1,2,4a,6b,9,9,12a-
heptamethyl-10-hydroxy- 
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Table 5 Relative Proportion for Secondary Metabolites Chosen for Analysis 

 

Compounds with high frequency and relative proportions were chosen for further analysis. Treatments 
consisted of varying vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). Values were 
expressed as mean ± Standard Deviation. Each treatment consisted of n = 16. One-way ANOVAs were 
performed on the Relative Proportion of compounds detected across time and treatment. Means within a 
column followed by the same letter are not significantly different at p ≤ .0500. Significantly different 
treatments were highlighted by adding a letter to mean relative proportion values.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Compound Detected 

Treatment 

Control T5% T10% T20% 

Phenolic Compounds     

     a- Tocopherol 3.2964 ± 1.15a 3.0245 ± 0.89a 3.0351 ± 0.86a 2.460 ± 0.06a 

     Eugenol 0.0261 ± 0.05a 0.0169 ± 0.04a 0.0298 ± 0.05a 0.0237 ± 0.04a 

     Phenol, 4-ethenyl-2,6-dimethoxy- 
 

0.0207 ± 0.05a 0.0362 ± 0.08a 0.0358 ± 0.06a 0.0105 ± 0.04a 

Terpenoids       
Monoterpene     
     β-Phellandrene 0.0955 ± 0.14a 0.1820 ± 0.16a 0.2281 ± 0.19a 0.3024 ± 0.19b

Diterpene     
     Phytol 0.3005 ± 0.13a 0.2896 ± 0.11a 0.2139 ± 0.06ab 0.2066 ± 0.06b

Sterols     
     Stigmasterol 0.8648 ± 0.24a 0.7781 ± 0.21a 0.7226 ± 0.22a 0.7595 ± 0.19a 

     γ-Sitosterol 0.3608 ± 0.10a 0.3398 ± 0.09a 0.3324 ± 0.07a 0.3419 ± 0.07a 

     Lupeol 0.2633 ± 0.22a 0.2540 ± 0.21a 0.2214 ± 0.17a 0.1976 ± 0.13a 

     β-Amyrin 0.6319 ± 0.39a 0.6359 ± 0.33a 0.5876 ± 0.27a 0.4987 ± 0.22a 

Carotenoids     
     Lycopersene 0.1328 ± 0.09a 0.1820 ± 0.09a 0.1817 ± 0.06a 0.2066 ± 0.11a 

     
Fatty Acids      
     Hexadecanoid acid 0.8107 ± 0.38a 0.7723 ± 0.26a 0.6942 ± 0.28a 0.6661 ± 0.22a 

     Linolenic acid 0.1845 ± 0.25a 0.2384 ± 0.24a 0.1463 ± 0.16a 0.1872 ± 0.18a 

     Octadecanoic Acid 
 

0.4007 ± 0.32a 0.4958 ± 0.24a 0.3362 ± 0.17ab 0.1722 ± 0.03b

Alkanes       
     Hentriacontane 0.3695 ± 0.25a 0.3626 ± 0.17a 0.4254 ± 0.21a 0.4160 ± 0.13a 

     Nonacosane 0.4104 ± 0.10a 0.4305 ± 0.09a 0.3864 ± 0.09a 0.8375 ± 0.73b

     Dotriacontane  0.2692 ± 0.17a 0.2105 ± 0.10a 0.2243 ± 0.13a 0.2118 ± 0.09a 
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4.2.1 Phenolic Compounds 

 

Table 6 Mean Relative Proportions of Phenolic Compounds Detected through GC/MS 
Analysis 

 

 
Treatments consisted of varying vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). 
Harvesting periods are mean to represent sampling time. Each harvesting was completed every three weeks 
after treatments began. Values were expressed as mean ± Standard Deviation. Each treatment consisted of n 
= 16. One-way ANOVAs were performed on the Relative Proportion of compounds detected across time 
and treatment. Means within a column followed by the same letter are not significantly different at p 
≤ .0500. Significantly different treatments were highlighted by adding a letter to mean relative proportion 
values. Compounds that were not detected were denoted as “n.d”.  
 

 

 Phenolic compounds comprised a large proportion of BHN589 tomato leaves. 

Specifically, a-Tocopherol or Vitamin E, which had the highest relative proportion out of 

all other detected compounds. Other phenolic compounds such as Eugenol and Phenol, 4-

ethenyl-2,6-dimethoxy- were also detected, but at substantially lower quantities (Table 5; 

Table 6). Relative proportions for a-Tocopherol were greatest in Control group. Relative 

proportion in Eugenol was highest in T10% treated plants. Relative proportion for 

 
Compound  

Treatment Type 

Harvesting Period  

1H 2H 3H 4H 

a- Tocopherol     

     Control 2.207 ± 0.15 3.896 ± 1.45 3.3670 ± 1.28 3.715 ± 0.76 

     T5% 1.946 ± 0.24 2.868 ± 0.10 3.831 ± 0.80 3.453 ± 0.77 

     T10% 2.129 ± 0.17 2.526 ± 0.35 3.668 ± 0.52 3.816 ± 0.74 

     T20% 1.718 ± 0.13 2.382 ± 0.62 3.118 ± 0.66 2.787 ± 0.32 

     

Eugenol     

     Control 0.027 ± 0.05 n/d 0.769 ± 0.09 n/d 

     T5% n/d n/d 0.039 ± 0.07 0.029 ± 0.06 

     T10% n/d n/d 0.119 ± 0.01 n/d 

     T20% n/d n/d 0.086 ± 0.074 0.024 ± 0.33 

     

Phenol, 4-ethenyl-2,6-dimethoxy-     

     Control n/d n/d 0.083 ± 0.10 n/d 

     T5% n/d n/d 0.145 ± 0.11 n/d 

     T10% n/d n/d 0.143 ± 0.04 n/d 

     T20% 

 

n/d n/d 0.053 ± 0.09 n/d 
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Phenol, 4-ethenyl-2,6-dimethoxy- was highest in T5% treatment. Although none of the 

treatments were significantly different from each other (p > 0.05), concentrations for all 

phenolic compounds varied over time.  

The relative proportion of all phenolic compounds was the highest during 

harvesting period 3H. For example, the mean relative proportion of a-Tocopherol nearly 

doubled from harvesting period 2H to 3H (2.612 to 3.831 mean relative proportion; 

Figure ). T10% and T20% followed an identical trend, experiencing large increases in the 

mean relative proportions during harvesting period 3H.  Similarly, Eugenol and Phenol, 

4-ethenyl-2,6-dimethoxy- also saw significant (p ≤ 0.05) increases in all treatments 

during harvest period 3H. For instance, the mean relative proportion of Eugenol during 

harvesting period 3H was 4 (.1190) and 3.6 (0.0863) (Table 6) times greater than the 

mean relative proportion in T10% and T20% treated plants respectively (Table 6).  

Moreover, Phenol, 4-ethenyl-2,6-dimethoxy- was only detected during harvesting period 

3H. Relative proportion values for Phenol, 4-ethenyl-2,6-dimethoxy- was highest in T5% 

and T10% treated plants.    
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4.2.1.1 Total Phenolics Bioassay 

Table 7 Concentration of Total Phenolics (g) in Tomatoes Treated with Vermicompost 
Tea 

 

 

 

 

 

 

Total Phenolics are expressed in Gallic acid equivalent (g). Treatments consisted of varying vermicompost 

tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). Values were expressed as mean total phenolics 

concentrations ± standard deviation. Each treatment consisted of n = 16. One-way and two-way ANOVAs 

were performed on the total phenolics concentration values across time and treatment. Means within a 

column followed by the same letter are not significantly different at p ≤ .0500. Significantly different 
treatments were highlighted by adding a letter to mean total phenolics concentration values.  

 

High concentrations of phenolic compounds were detected in tomato leaves 

across all treatments. Total concentration of phenolic compounds was significantly 

different across time and treatment type. The greatest concentration of phenolic 

compounds was detected during the third harvesting period, 3H (Table 7). During this 

harvesting period, phenolic compound concentrations significantly increased (p ≤ 0.05) in 

all treatments. The greatest increase was experienced by T20% treated plants. This sharp 

increase in the concentration of phenolic compounds coincided with tomato ripening and 

fruit harvest. Total phenolic concentration also significantly differed across treatment 

type (Table 7). T10% treated plants had a significantly higher (p ≤ 0.05) concentration of 

phenolic compounds compared to the remaining vermicompost tea treatments and control 

group. The lowest phenolic compound concentration was observed in the Control group.    

 
Treatment 

Harvesting Period   

1H 2H 3H 4H Average 

Control 37.523 ± 4.3 31.817 ± 2.5 43.264 ± 3.6 32.389 ± 6.7 36.248± 8.2a 

T5% 44.680 ± 9 36.048 ± 4.8 52.971 ± 13.3 40.090 ± 7.4 43.447± 8.6ab 

T10% 43.075 ± 8.9 46.392 ± 7.1 59.314 ± 7.8 43.046 ± 3.5 47.957± 10.3b 

T20% 42.249 ± 6.6 33.481 ± 8.9 54.116 ± 6.8 17.395 ± 2.4 36.810± 14.6a 
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4.1.2 Terpenoids  

 Eight terpenoids were detected and identified in BHN589 tomato plants. 

Terpenoids identified were highly diverse and included a multitude of functional 

isoprenoid groups such as monoterpenes, diterpenes, triterpenes (sterols), and 

tetraterpenes (carotenoids). Stigmasterol, a sterol, had the highest relative proportion of 

all the terpenes registered. Overall, there is a significant difference (p ≤ 0.05) between the 

relative proportion in treatments T20% and Control (Figure 6, Table and Table). 

Significant differences between both groups might be attributed to inverse concentrations 

of four different terpenes. Control group plants had high mean relative proportion values 

for Phytol, Lupeol and β-Amyrin, and low relative proportion values for β-Phellandrene 

and Lycopersene. An inverse of this pattern was observed in T20% treated plants. An 

example of this inverse pattern can be observed in Figure 6.  
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Figure 6 Line Graph of Diterpenes, Monoterpenes and Carotenoids depicting a) Mean relative proportion over time and b) Inverse pattern 
between β-Phellandrene, Phytol and Lycopersene concentration in Control and T20% treated plants. Treatments consisted of varying 
vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). This graph only includes results for Control and T20% treated plants. Each 
color represents a different compound (blue= β-Phellandrene, red= Phytol, and green = Lycopersene). Values were expressed as mean ± 
Standard Deviation error bars. Each treatment consisted of n = 16. One-way ANOVAs were performed on the Relative Proportion of 
compounds detected across time and treatment. Means within a column followed by the same letter are not significantly different at p ≤ .0500. 
Significantly different treatments were highlighted by adding a letter to mean relative proportion values. 
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4.1.2.1 Monoterpenes and Diterpenes  

Table 8 Mean Relative Proportion of Monoterpenes, Diterpenes, and Carotenoids 
Detected through GC/MS Analysis Across Time and Treatment  

 

β-Phellandrene and Phytol were the only monoterpene and diterpene respectively 

detected in BHN589 tomato plants (Table 8). The highest concentration of β-

Phellandrene was observed in T20% treated plants (Figure 6 and Table 8), while the 

highest concentration of Phytol was recorded in the Control group (Figure 6 and Table 8). 

Mean relative proportions of both compounds varied over time and treatment type. 

Overall, all plants experienced an increase in β-Phellandrene across time. This positive 

trend could be observed across all treatment types. T20% treated plants had a 

 
Compound  

Treatment Type 

Harvesting Period  

1H 2H 3H 4H 

β-Phellandrene     

     Control 0.032 ± 0.06 n/d  0.089 ± 0.11  0.261 ± 0.20  

     T5% 0.071 ± 0.05 0.134 ± 0.16   0.139 ± 0.17  0.386 ± 0.07  

     T10% 0.056 ± 0.06 0.155 ± 0.20  0.206 ± 0.03  0.496 ± 0.09  

     T20% 0.109 ± 0.08 0.212 ± 0.05  0.380 ± 0.08  0.538 ± 0.18  

     

Phytol     

     Control 0.331 ± 0.14 0.189 ± 0.08  0.344 ± 0.15  0.337 ± 0.14  

     T5% 0.299 ± 0.10 0.157 ± 0.02  0.318 ± 0.12  0.385 ± 0.08  

     T10% 0.271 ± 0.07 0.202 ± 0.07  0.170 ± 0.05  0.170 ± 0.05  

     T20% 0.178 ± 0.08 0.159 ± 0.06  0.259 ± 0.07  0.184 ± 0.03  

     

Lycopersene      

     Control 0.067 ± 0.08 0.140 ± 0.09  0.105 ± 0.12  0.219 ± 00.02  

     T5% 0.096 ± 0.11 0.163 ± 0.03  0.195 ± 0.07  0.274 ± 0.04  

     T10% 0.174 ± 0.05 0.152 ± 0.12  0.172 ± 0.01  0.228 ± 0.02  

     T20% 

 

0.183 ± 0.05 0.173 ± 0.03  0.134 ± 0.06 0.319 ± 0.18  

Treatments consisted of varying vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). 
Values were expressed as mean ± Standard Deviation. Each treatment consisted of n = 16. One-way 
ANOVAs were performed on the Relative Proportion of compounds detected across time and treatment. 
Means within a column followed by the same letter are not significantly different at p ≤ .0500. Significantly 
different treatments were highlighted by adding a letter to mean relative proportion values. Compounds that 
were not detected were denoted as “n.d”.  
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significantly higher (p ≤ 0.05) proportion of β-Phellandrene as compared to the Control 

group and the remaining vermicompost tea treatments. Over the course of the experiment, 

mean relative proportion values for β-Phellandrene in T20% plants increased 4.8 times 

(from 0.109 to 0.538). The greatest accumulation of β-Phellandrene in T20% treated 

plants occurred during harvesting period 3H. Harvesting period 3H was characterized by 

tomato fruit ripening and harvesting. During this time, the plants allocated its resources to 

the production of monoterpenes. Relative proportions for Phytol were significantly 

different between T20%, and Control/T5% treatments. Relative proportions for Phytol 

were significantly lower (p ≤ 0.05) in T20% as compared to Control and T5% treated 

plants (Table 5 and Table 8). Additionally, mean relative proportion values of Phytol 

decreased, as vermicompost ratios decreased.  
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4.1.2.2 Sterols  

 

Table 9 Mean Relative Proportion of Sterols Detected through GC/MS Analysis across 
Time and Treatment  

 

 

 

 Seven sterols and three isomers of a sterol precursor were identified and detected 

while testing BHN589 tomato plants. Only four compounds were chosen for an in-depth 

analysis given their frequency and relative proportion. Compounds chosen were 

 
Compound  

Treatment Type 

Harvesting Period  

1H 2H 3H 4H 

Stigmasterol     

     Control 1.01 ± 0.39 0.759 ± 0.04  0.805 ± 0.28  0.885 ± 0.13  

     T5% 0.831 ± 0.31 0.883 ± 0.15 0.694 ± 0.23 0.704 ± 0.14 

     T10% 0.882 ± 0.09 0.509 ± 0.33  0.850 ± 0.11  0.649 ± 0.05  

     T20% 0.870 ± 0.08 0.834 ± 0.12  0.695 ± 0.38  0.676 ± 0.07  

     

γ - Sisterol     

     Control 0.476 ± 0.16 0.354 ± 0.05  0.299 ± 0.03  0.313 ± 0.04  

     T5% 0.396 ±0.14 0.405 ± 0.08 0.271 ± 0.45  0.288 ± 0.03  

     T10% 0.446 ± 0.04 0.304 ± 0.02  0.310 ± 0.05  0.270 ± 0.02   

     T20% 0.426 ± 0.06 0.357 ± 0.05  0.304 ± 0.04  0.301 ± 0.03  

     

Β-Amyrin     

     Control 0.183 ± 0.12 1.038 ± 0.32 0.637 ± 0.41 0.668 ± 0.09 

     T5% 0.241 ± 0.06  0.974 ± 0.33  0.617 ± 0.18  0.712 ± 0.19 

     T10% 0.252 ± 0.07 0.850 ± 0.23  0.611 ± 0.21  0.638 ± 0.16  

     T20% 

 

0.243 ± 0.02  0.789 ± 0.08 0.414 ± 0.16 0.541 ± 0.06 

Lupeol     

     Control n.d 0.477 ± 0.14 0.309 ± 0.25 0.266 ± 0.10 

     T5% 0.026 ± 0.05 0.512 ± 0.15   0.326 ± 0.12  0.152 ± 0.10  

     T10% 0.066 ± 0.08 0.422 ± 0.17   0.264 ± 0.09  0.134 ± 0.10  

     T20% 

 

0.054 ± 0.06  0.381 ± 0.04 0.193 ± 0.08 0.169 ± 0.04 

Treatments consisted of varying vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). 
Values were expressed as mean ± Standard Deviation. Each treatment consisted of n = 16. One-way 
ANOVAs were performed on the Relative Proportion of compounds detected across time and treatment. 
Means within a column followed by the same letter are not significantly different at p ≤ .0500. Significantly 
different treatments were highlighted by adding a letter to mean relative proportion values. Compounds that 
were not detected were denoted as “n.d”.  
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Stigmasterol, γ-Sitosterol, Lupeol and β-Amyrin. Overall, a significant (p ≤ 0.05) 

downwards trend over time was observed for all sterols across all treatments (Table 9).  

Moreover, mean relative proportion values for sterols decreased as vermicompost 

concentration increased (Table 5 and Table 9). Finally, there was no significant 

difference in mean relative proportion values between any of the treatments. Despite a 

lack of significance, the same inverse pattern between Control and T20% treated plants 

was also observed.  Mean relative proportions for Lupeol and β-Amyrin were highest in 

plants belonging to the Control group. Mean relative proportions for Lupeol and β-

Amyrin were lowest in T20% treated plants.  

4.1.2.3 Carotenoids  

 Only two carotenoids, Lycopersene and Rhodopin, were detected and identified in 

this study. Due to low frequency and relative proportion, Rhodopin was not considered.  

In general, concentrations for both compounds varied across time and treatment type. All 

treatments experienced a significant (p ≤ 0.05) accumulation of Lycopersene over time. 

The greatest mean relative proportion for Lycopersene was observed in T20% treated 

plants (Table 5 and Table 8). T20% treated plants, experienced a sharp increase in 

Lycopersene concentration during harvest period 4H, doubling (from .134 to .319) in 

three weeks (Table 8 and Figure 6). Control, T5% and T10% treated plants also 

experience this increase at a lesser degree (Table 8 and Figure 6).  
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4.1.3 Fatty Acids  

 

Table 10 Mean Relative Proportion of Fatty Acids Detected through GC/MS Analysis 
Across Time and Treatment type 

 

 
Treatments consisted of varying vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). 
Values were expressed as mean ± Standard Deviation. Each treatment consisted of n = 16. One-way 
ANOVAs were performed on the Relative Proportion of compounds detected across time and treatment. 
Means within a column followed by the same letter are not significantly different at p ≤ .0500. Significantly 
different treatments were highlighted by adding a letter to mean relative proportion values. Compounds that 
were not detected were denoted as “n.d”.  
 

  Six fatty acids were detected and identified throughout this study. Based on 

frequency and relative proportion values, three compounds were chosen for in-depth 

analysis. The compounds chosen were Hexadecanoic acid, Linolenic acid and 

Octadecanoic acid. Mean relative proportion of all the compounds fluctuated over time 

and treatment type. Generally, most compounds followed a similar trend across time. 

Hexadecanoic acid and Linoleic acid were highest during harvesting periods 1H and 3H, 

while intermittingly decreasing during 2H and 4H (Table 10). This trend is best observed 

 
Compound  

Treatment Type 

Harvesting Period  

1H 2H 3H 4H 

Hexadecanoic acid     

     Control 1.107 ± 0.45 0.554 ± 0.34 1.028 ± 0.22 0.553 ± 0.10 

     T5% 0.896 ± 0.14 0.488 ± 0.06 1.01 ± 0.29 0.695 ± 0.16 

     T10% 1.049 ± 0.24 0.477 ± 0.08 0.805 ± 0.11 0.445 ± 0.54 

     T20% 0.824 ± 0.24 0.489 ± 0.07 0.827 ± 0.19 0.564 ± 0.11 

     

Linolenic acid     

     Control 0.399 ± 0.29 0.114 ± 0.22 0.225 ± 0.26 0.224 ± 0.81 

     T5% 0.188 ± 0.22 0.133 ± 0.09 0.412 ± 0.22 0.220 ± 0.44 

     T10% 0.995 ± 0.19  0.231 ± 0.10 0.254 ± 0.18 n/d 

     T20% 0.207 ± 0.24 0.143 ± 0.12 0.369 ± 0.05 0.059 ± 0.12 

     

Octadecanoic acid     

     Control 0.551 ± 0.41 0.336 ± 0.22 0.224 ± 0.08 0.492 ± 0.46 

     T5% 0.628 ± 0.20 0.250 ± 0.15 0.701 ± 0.21 0.404 ± 0.09 

     T10% 0.306 ± 0.17 0.284 ± 0.23 0.517 ± 0.08 0.238 ± 0.04 

     T20% 

 

0.134 ± 0.05 0.179 ± 0.02 0.211 ± 0.01 0.175 ± 0.01 
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in Table 10. Changes throughout harvesting periods for all compounds and treatment 

types were significant (p ≤ 0.05). Mean relative proportion values for Hexadecanoic acid 

and Octadecanoic acid decreased as vermicompost concentrations increased. 

Furthermore, relative proportion values for Octadecanoic acid were significantly lower (p 

≤ 0.05) in T20% as compared to Control and T5% treatments. Concentration of 

Octadecanoic acid in T20% treated plants remained relatively unchanged throughout each 

harvesting period as compared to the remaining vermicompost tea treatments (Table 10).  

4.1.4 Alkanes  

 

Table 11 Mean Relative Proportion for Alkanes Detected by GC/MS Analysis across 
Time and Treatment Type 

 

Treatments consisted of varying vermicompost tea ratios (T5%= 1:20, T10%= 1:10, and T20%= 1:5). 
Values were expressed as mean ± Standard Deviation. Each treatment consisted of n = 16. One-way 
ANOVAs were performed on the Relative Proportion of compounds detected across time and treatment. 
Means within a column followed by the same letter are not significantly different at p ≤ .0500. Significantly 
different treatments were highlighted by adding a letter to mean relative proportion values. Compounds that 
were not detected were denoted as “n.d”. 

 
Compound  

Treatment Type 

Harvesting Period  

1H 2H 3H 4H 

Dotriacontane     

     Control 0.512 ± 0.14 0.144 ± 0.10  0.187 ± 0.03  0.233 ± 0.12  

     T5% 0.303 ± 0.14 0.216 ± 0.04  0.169 ± 0.04  0.153 ± 0.10  

     T10% 0.412 ± 0.07 0.229 ± 0.04  0.108 ± 0.04  0.148 ± 0.02  

     T20% 0.326 ± 0.02 0.189 ± 0.19  0.198 ± 0.07  0.130 ± 0.09  

     

Hentriacontane     

     Control 0.702 ± 0.16 0.373 ± 0.09  0.251 ± 0.17  0.152 ± 0.20  

     T5% 0.533 ± 0.14 0.370 ± 0.14  0.206 ± 0.16  0.341 ± 0.06  

     T10% 0.739 ± 0.15 0.406 ± 0.09  0.311 ± 0.05  0.245 ± 0.03  

     T20% 0.595 ± 0.10 0.393 ± 0.76  0.336 ± 0.04  0.321 ± 0.07 

     

Nonacosane     

     Control 0.464 ± 0.10  0.426 ± 0.15  0.363 ± 0.09  0.389 ± 0.10  

     T5% 0.381 ± 0.09 0.473 ± 0.12  0.464 ± 0.08 0.404 ± 0.05  

     T10% 0.480 ± 0.11 0.369 ± 0.06  0.375 ± 0.09  0.322 ± 0.07  

     T20% 

 

0.393 ± 0.06  0.475 ± 0.07 0.373 ± 0.05 1.993 ± 0.24 
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Five alkanes were detected and identified across all treatments. Based on 

frequency and mean relative proportion, three compounds were chosen for closer 

analysis. Compounds chosen were Dotriacontane, Hentriacontane and Nonacosane. 

Overall, mean relative proportion for all compounds varied across time. Dotriacontane 

and Hentriacontane followed a similar trend throughout every treatment, decreasing 

significantly (p ≤ 0.05) over time (Table). Nonacosane remained relatively stable across 

all treatments except T20% (Table 11). Plants treated with T20% have a significantly 

higher (p ≤ 0.05) mean relative proportion values for Nonacosane as compared to all 

other treatments (Table 5). High concentration of Nonacosane in T20% treated plants was 

registered during harvesting period 4H. Harvesting period 4H occurred during tomaot 

post-harvest.  

4.1.5 Effect of Vermicompost Tea on Secondary Metabolites 

 Secondary metabolites changes to BHN589 tomato plants were monitored from 

seedling to harvesting stages. Results demonstrated that secondary metabolites fluctuated 

naturally through time and treatment types. Vermicompost tea treatments, especially 

T20%, had a noticeable effect on terpenoid metabolic pathways, upregulating the 

Mevalonic acid pathway. The Mevalonic acid pathway regulates all terpenoid production. 

The most notable change was produced on the monoterpene, β-Phellandrene. 

Monoterpenes are the one of the primary contributors to organoleptic properties like 

smell and taste (Davis, 2010). β-Phellandrene, a volatile monoterpene, produces the 

strong odors that characterize tomato plant aroma (Buttery et al., 1987). This volatile 

compound also functions as a chemical defense against pest. Chiu et al. (2017) reported 
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β-Phellandrene had moderate toxicity against Dendroctonus ponderosae or Pine beetles. 

Seo et al. (2014) also described β-Phellandrene’s toxic properties, discovering its AChe 

(Acetylcholinesterase) inhibition capabilities. AChe regulates nerve impulse 

transmissions across cholinergic synapses (Siegfried & Scott, 1990; Lopez & Pascual-

Villalobos, 2009). Inhibition of AChe causes neurotoxicity symptoms such as paralysis 

and can interfere with other physiological functions (Lopez & Pascual-Villalobos, 2009).  

 Production and accumulation of other terpenoids was also affected. For instance, 

relative proportion for Lycopersene increased with vermicompost concentration in 

administered treatments. The highest relative value for Lycopersene was observed during 

harvest period 3H, which was characterized by fruit ripening and harvesting. Greatest 

mean relative value for Lycopersene was observed in T20% treated plants. Ebadollahi et 

al. (2015) demonstrated that Lycopersene had arachnicide like properties, deterring 

Tetranychus urticae or spider mite attacks. Additionally, Li et al. (2015), found that 

Lycopersene had potent antibacterial properties against various bacterial groups. 

Enhanced production of carotenoids and other volatile compounds during fruit ripening 

might serve as an attractant for seed dispersal or as defense to warn off pest during fruit 

maturation.  

 Mean relative proportions for sterols Lupeol, Phytol and β-Amyrin were 

negatively affected by vermicompost tea treatments. The negative relationship between 

vermicompost and sterols could be attributed to the presence of gibberellic acid or indole 

acetic acid. Ravindran et al. (2016) and Aremu et al. (2014) reported the presence of 

gibberellins in vermicompost. Vermicompost tea’s chemical composition could have 

induced change in sterol production. Jusaitis et al. (1981) reported that long-term 
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exposure of barley stems to gibberellic acid caused a decrease in sterol content. 

Furthermore, Heble et al. (1971) reported a decrease in sisterol following an indole acetic 

acid treatment.  

 Vermicompost tea applications also decreased fatty acid content. A negative 

relationship could be observed between mean relative proportions for fatty acids and 

vermicompost concentration in tea. Fatty acid production is influenced by abiotic/biotic 

stresses and developmental cues (Bigault Du Granrut & Cacas, 2016). For example, 

temperature induced stress causes changes in the plasma membrane’s physico-chemical 

properties due to alteration in sterol concentration (Bigault Du Granrut & Cacas, 2016). 

Moreover, increased plant resistance to pathogens can provoke the consumption of fatty 

acids originating from chloroplast to supply an oxidative pathway that coordinates host 

cell dismantling (Bigault Du Granrut & Cacas, 2016).  A decrease of fatty acids across 

vermicompost tea treatments could be a response to an enhanced mechanism for pest 

resistance. This could be considered antixenosis, which is an induced defense that 

modifies physical and chemical plant structures to deter pest infestation.  

 Long chain alkanes are produced as part of epicuticular waxes in terrestrial plants 

(Bliedtner et al., 2018). The primary role for cuticular waxes is to regulate the movement 

of molecules into and outside of the plants (Ziv et al., 2018). There is also evidence 

suggesting that cuticular waxes adapt to abiotic and biotic stress and are actively involved 

in plant defense and signaling pathways for plant growth and development (Raffaele et 

al., 2009; Javelle et al., 2011; Aragon et al., 2017; Ziv et al., 2018). The observed 

increase of Nonacosane in T20% treated plants might be attributed to chemical 

elicitation. Several plant hormones affect the development of plant cuticles and stress 
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tolerance. Xia et al. (2010) reported that gibberellic acid treatments increased cuticular 

waxes Arabidopsis plants. This increase improved plant immunity against pathogenic 

bacteria Pseudomonas syringae (Xia et al., 2010; Ziv et al., 2018). Reduced levels of 

abscisic acid increased cuticle permeability and resistance to fungal pathogen Botrytis 

cinerea.  

  Phenolic compounds detected by GC/MS analysis remained relatively unchanged 

by vermicompost treatments. Despite this observation, a total phenolics bioassay revealed 

that vermicompost tea treatments significantly affected phenolic compound production in 

tomato plants. Generally, vermicompost tea treated plants had a higher phenolic content 

than the control group. Additionally, T10% treated plants had significantly greater 

phenolic compound concentration than any other treatment. Similar results were found by 

Nur et al. (2013). Nur et al. (2013) evaluated the effects different fertilization regimes in 

total phenolics. Results demonstrated that phenolic content was significantly higher in 

vermicompost treated plants (Nur et al., 2013). Results from this experiment differed 

slightly. The highest concentration of phenolic compounds was observed in the moderate 

vermicompost tea treatment, and not the highest treatment (T20%).  Moreover, Zhao et 

al. (2009) found that phenolic compounds increased with low nitrogen availability and 

considerable yield reduction. Different fertilization regimes could explain the differences 

between treatments. Plants treated with T20% vermicompost tea had reduced phenolic 

compound concentration. Low concentrations in T20% treated plants might suggest that 

greater amounts of vermicompost is needed to provide the plant with balanced nutrition. 

However, this does not explain why the control group and T20% treated plants have 

similar phenolic compound concentrations.   
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5. CONCLUSION 

 Vermicompost tea treatments, specifically T20% treatment type, induced physical 

and chemical changes in BHN589 tomato plants. T20% treated plants experienced 

significantly greater biomass and improved concentrations of chlorophyll, yield, and soil 

pH. Although significant differences were only observed in biomass and soil pH. 

Changes to secondary metabolite production were also observed within T20% treated 

plants. T20% vermicompost tea treatment had a strong influence in the mevalonic acid 

pathway. As a result, terpenoid production was altered. Changes in terpenoid production 

increased β-Phellandrene and Lycopersene accumulation, while decreasing sterol 

concentration. Vermicompost tea treatments also affected phenolic compound 

production, specifically in the phenylpropanoid pathway. Low and moderate (T5% and 

T20%) vermicompost tea treatments had the highest concentration of phenolic 

compounds. Differences between treatments might be associated to enhanced stress 

resistance or nutrient composition in the tea. Some fatty acids and alkanes were also 

influenced by vermicompost tea treatments. Decreases in fatty acid concentrations might 

be attributed to antixenosis. This would mean that plants are using a high concentration 

of fatty acids deter pest infestation. An increase in Nonacosane alkane might also be 

related to vermicompost tea. The addition of plant hormones such as gibberellins and 

abscisic acid found in vermicompost influences cuticular wax. Alterations to cuticular 

wax improves plant immunity to bacterial and fungal pathogens.  

 High variation and low influence on plant physical structures could be attributed 

to a multitude of factors such as inclement weather, low doses/concentrations of 

vermicompost, or any cultivation practices utilized. Furthermore, yield and mortality 
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were directly affected by leaf harvesting. Due to the size and weight of tomato leaves, 

samples had to be bulked for chemical analysis. A larger number of replications would 

have decreased variation between observed results.  

 Impact of inorganic fertilizers continues to threaten biodiversity, negatively 

affecting beneficial organisms such as pollinators. Due to increased growth and enhanced 

secondary metabolite production of defense compounds, vermicompost tea addition could 

be a viable and sustainable practice in pest resistance and fertilization. Further research 

must be conducted on the effects of vermicompost and vermicompost tea on chemical 

elicitation and secondary metabolite production to conclusively determine if pest 

enhanced pest resistance is due to a change in chemical or physical structures of the plant.  
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